期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electromagnetic interference shielding properties of polymer derived SiC-Si3N4 composite ceramics 被引量:2
1
作者 Xiaoling Liu Xiaowei Yin +2 位作者 Wenyan Duan Fang Ye Xinliang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2832-2839,共8页
SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosph... SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosphere. The porosity of SiC-Si3N4 ceramics decreases to 6.4% due to the addition of inert filler Si3N4. And the content and crystallization degree of free carbon and SiC derived from PCS are improved simultaneously with the increase of thermal treatment temperature. Finally, the free carbon and SiC interconnect, forming the conductive network. As a result, the electromagnetic interference(EMI) shielding performance of the as-prepared ceramic annealed at 1400℃ reaches up to 36 d B, meaning more than99.9% of EM energy is shielded. The low porosity and high EMI shielding performance enable SiC-Si3N4 composite ceramics to be a promising electromagnetic shielding and structural material. 展开更多
关键词 Polymer derived ceramics electromagnetic shielding properties SIC-SI3N4 Inert filler
原文传递
From binary to ternary and back to binary:Transition of electromagnetic wave shielding to absorption among MAB phase Ni_(3)ZnB_(2)and corresponding binary borides Nin+1Bn(n=1,3) 被引量:2
2
作者 Chengwen Wu Fan Zhang +6 位作者 Qin Zhi Bo Song Yongqiang Chen Hailong Wang Rui Zhang Hongxia Li Bingbing Fan 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第11期2101-2111,共11页
Due to chemical inertness of nickel and boron,the preparation of nickel borides and corresponding layered ternary transition metal borides Ni_(3)ZnB_(2)(MAB phase)has always required high-temperature and/or high-press... Due to chemical inertness of nickel and boron,the preparation of nickel borides and corresponding layered ternary transition metal borides Ni_(3)ZnB_(2)(MAB phase)has always required high-temperature and/or high-pressure conditions.Yet,an innovative and efficient approach to preparing Ni_(3)ZnB_(2)at only 600℃and without applied pressure is presented in this study.It is discovered that by simply adjusting the temperature,a phase transition from Ni_(3)ZnB_(2)to Ni4B3 with a layered structure could be induced.This transition between the binary-component and the ternary-component brings about significant variation in electromagnetic wave(EMW)shielding/absorption performance of prepared borides.For instance,Ni2B has good EMW shielding performance(42.54 dB in X band)and Ni_(3)ZnB_(2)is of weak EMW shielding(13.43 dB in X band);Ni_(3)ZnB_(2)has poor EMW absorption performance(−5 dB)while Ni4B3 has excellent EMW absorption performance(−45.19 dB)at a thickness of 2.7 mm with effective absorption bandwidth(10.4 GHz). 展开更多
关键词 nickel borides Ni_(3)ZnB_(2) electromagnetic wave(EMW)shielding properties electromagnetic wave absorbing properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部