Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil...Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace.展开更多
Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed ...Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption.展开更多
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the...Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru...Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.展开更多
The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular mom...The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.展开更多
Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres...Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.展开更多
This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured ...This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods.展开更多
Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic stru...Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.展开更多
The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrot...The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.展开更多
In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has beco...In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys.展开更多
Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, ta...Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, taking them as the fundamental equations, the wave equation and energy equation of LEM waves are established, and a new electromagnetic wave propagation mode based on the mutual induction of scalar electromagnetic fields/vortex magneto-electric fields, which was overlooked in current Maxwell’s equations, are put forward. Moreover, through theoretical derivation based on vacuum LEM waves, the Maxwell’s equations of the gravitational field generated by vacuum LEM waves, the wave equations of the electromagnetic scalar potential/magnetic vector potential and the constraint equation governing the wave phase-velocities between LEM/TEM waves are discovered. Finally, on the basis of these theoretical research results, the electromagnetic properties of vacuum LEM waves are analyzed in detail, encompassing the speed of light, harmless penetrability to the human body, absorption and stable storage by water, the possibility of generating artificial gravitational fields, and the capability of extracting free energy. This reveals the medical functional mechanism of LEM waves and establishes a solid theoretical basis for the application of LEM waves in the fields of medicine and energy.展开更多
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterost...The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.展开更多
At present,metal-organic framework(MOF)-derived nano-micro architectures are actively explored for electromagnetic(EM)wave absorption owing to their flexible composition and structural manipulation that enhance dielec...At present,metal-organic framework(MOF)-derived nano-micro architectures are actively explored for electromagnetic(EM)wave absorption owing to their flexible composition and structural manipulation that enhance dielectric and magnetic attenuations.However,the basic design principles in MOF-derived microwave absorption materials have not been summarized.This review is devoted to analyzing design principles in MOF-derived microwave absorption materials from the following perspectives:diverse monomers(ligands and ions of MOFs),topologies,chemical states,and physical properties.The derived essential information regarding the EM wave absorption mechanism and the structural-functional dependency is also comprehensively summarized.Finally,a clear insight into the challenges and perspectives of the industrial revolution upgrading in this promising field is proposed.展开更多
In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which c...In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process.As a result,Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell.The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability,which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment.In addition,this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber.The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials.This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications.展开更多
Growing electromagnetic pollution has plagued researchers in the field of electromagnetic(EM)energy dissipation for many years;it is increasingly important to solve this problem efficiently.Metal-organic frameworks(MO...Growing electromagnetic pollution has plagued researchers in the field of electromagnetic(EM)energy dissipation for many years;it is increasingly important to solve this problem efficiently.Metal-organic frameworks(MOFs),a shining star of functional materials,have attracted great attention for their advantages,which include highly tunable porosity,structure,and versatility.MOF-derived electromagnetic wave(EMW)absorbers,with advantages such as light weight,thin matching thickness,strong capacity,and wide effective bandwidth,are widely reported.However,current studies lack a systematic summary of the ternary synergistic effects of the precursor component-structure-EMW absorption behavior of MOF derivatives.Here we describe in detail the electromagnetic(EM)energy dissipation mechanism and strategy for preparing MOF-derived EMW absorbers.On the basis of this description,the following means are suggested for adjusting the EM parameters of MOF derivatives,achieving excellent EM energy dissipation:(1)changing the metal and ligands to regulate the chemical composition and morphology of the precursor,(2)controlling pyrolysis parameters(including temperature,heating rate,and gas atmosphere)to manipulate the structure and components of derivatives,and(3)compounding with enhancement phases,including carbon nanomaterials,metals,or other MOFs.展开更多
Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level ...Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge.Herein,a facile waterassisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co–N_(4)–O sites on biomass-derived carbon nanofiber(Co–N_(4)–O/NCF)for electromagnetic wave(EMW)absorption.In such nanofiber,one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction.In-depth experimental and theoretical studies reveal that the axial Co–O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co–N_(4) structure,leading to significantly enhanced dielectric polarization loss relevant to the planar Co–N_(4) sites.Importantly,the film based on Co–N_(4)–O/NCF exhibits light weight,flexibility,excellent mechanical properties,great thermal insulating feature,and excellent EMW absorption with a reflection loss of−45.82 dB along with an effective absorption bandwidth of 4.8 GHz.The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance,and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications.展开更多
In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and uni...In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and unique structure,which can meet the requirements of strong reflection loss(RL)and wide absorption bandwidth of EMW absorption materials.In this manuscript,indium nanoparticles/porous carbon(In/C)nanorods composites were prepared via the pyrolysis of nanorods-like In-MOFs at a low temperature of450°C.Indium nanoparticles are evenly attached and embedded on porous carbon.Low electrical conductivity of In/C nanorods is unfavorable to EMW absorption performance,which is due to the low temperature carbonization.Thus,graphene(Gr)nanosheets with high electrical conductivity are introduced to adjust electromagnetic parameters of In/C nanorods for enhancing EMW absorption.The minimum RL of the In/C-Gr-4 composite is up to-43.7 dB with a thin thickness of 1.30 mm.In addition,when the thickness is further reduced to 1.14 mm,the minimum RL of-39.3 dB at 16.1 GHz and effective absorption bandwidth of 3.7 GHz(from 14.3 to 18.0 GHz)can be achieved.This work indicates that In/C-Gr composites show excellent EMW absorption performance.展开更多
基金the National Natural Science Foundation of China(No.21902085 and 52172213)Natural Science and Development Foundation of Shenzhen(JCYJ20190807093205660)Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202202015).
文摘Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace.
基金the National Natural Science Foundation of China(Nos.52102036 and52301192)the Sichuan Science and Technology Program,China(No.2021JDRC0099)+3 种基金Taishan Scholars and Young Experts Program of Shandong Province,China(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution,China(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province,China(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams)“Sanqin Scholars”Innovation Teams Project of Shaanxi Province,China(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.)。
文摘Bioderived carbon materials have garnered considerable interest in the fields of microwave absorption and shielding due to their reproducibility and environmental friendliness.In this study,KOH was evenly distributed on biomass Tremella using the swelling induction method,leading to the preparation of a three-dimensional network-structured hierarchical porous carbon(HPC)through carbonization.The achieved microwave absorption intensity is robust at-47.34 dB with a thin thickness of 2.1 mm.Notably,the widest effective absorption bandwidth,reaching 7.0 GHz(11–18 GHz),is attained at a matching thickness of 2.2 mm.The exceptional broadband and reflection loss performance are attributed to the 3D porous networks,interface effects,carbon network defects,and dipole relaxation.HPC has outstanding absorption characteristics due to its excellent impedance matching and high attenuation constant.The uniform pore structures considerably optimize the impedance-matching performance of the material,while the abundance of interfaces and defects enhances the dielectric loss,thereby improving the attenuation constant.Furthermore,the impact of carbonization temperature and swelling rate on microwave absorption performance was systematically investigated.This research presents a strategy for preparing absorbing materials using biomass-derived HPC,showcasing considerable potential in the field of electromagnetic wave absorption.
基金supported by National Natural Science Foundation of China (NSFC 52372041, 52302087, 51772060, 51672059 and 51621091)Heilongjiang Touyan Team Program+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund (SAST2022-60)。
文摘Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2) as the core,MXene as the intermediate layer,and MoS_(2) as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2) nanosheets.Notably,the synergistic combination of SiO_(2) and MoS_(2) with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2) nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金funded by the National Natural Science Foundation of China(No.51873004).
文摘Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804073 and 61775050).
文摘The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.
基金supported by the National Natural Science Foundation of China(52231007,12327804,T2321003,22088101)this work was supported in part by the National Key Research Program of China under Grant 2021YFA1200600,and Shanghai Sailing Program(22YF1447800).
文摘Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.
基金National Research Foundation of Korea(NRF)Funded by the Korean Government(MSIT)under Grant Nos.RS-2023-00210317 and 2021R1A4A3030117the Digital-Based Building Construction and Safety Supervision Technology Research Program Funded by the Ministry of Land,Infrastructure,and Transport of the Korean Government under Grant No.RS-2022-00143493the Korea Institute of Civil Engineering and Building Technology(KICT)of the Republic of Korea,Project under Grant No.2023-0097。
文摘This study aims to develop a damage-detection algorithm based on the electromagnetic wave properties inside a reinforced concrete structure.The proposed method involves employing two algorithms based on data measured using ground-penetrating radar—a common electromagnetic wave method in civil engineering.The possible defect area was identified based on the energy dissipated by the damage in the frequency-wavenumber domain,with the damage localized using the calculated relative permittivity of the measurements.The proposed method was verified through a finite difference time-domain-based numerical analysis and a testing slab with artificial damage.As a result of verification,the proposed method quickly identified the presence of damage inside the concrete,especially for honeycomb-like defects located at the top of the rebar.This study has practical significance in scanning structures over a large area more quickly than other non-destructive testing methods,such as ultrasonic methods.
基金supported by the National Natural Science Foundation of China under Grant Nos. 52072196, 52002200, 52102106, 52202262, 22379081, 22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+1 种基金the Natural Science Foundation of Shandong Province under Grant Nos. ZR2020QE063, ZR2022ME090, ZR2023QE059. Moreoversupported by the Visiting Scholar Fellowship Funding for Teachers in Shandong Province’s General Undergraduate Institutions
文摘Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
基金This work was supported by the National Natural Science Foundation of China(No.51477002)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2019-028).
文摘The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.
文摘In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys.
文摘Based on theoretical system of current Maxwell’s equations, the Maxwell’s equations for LEM waves concealed in full current law and Faraday’s law of electromagnetic induction (Faraday’s law) are proposed. Then, taking them as the fundamental equations, the wave equation and energy equation of LEM waves are established, and a new electromagnetic wave propagation mode based on the mutual induction of scalar electromagnetic fields/vortex magneto-electric fields, which was overlooked in current Maxwell’s equations, are put forward. Moreover, through theoretical derivation based on vacuum LEM waves, the Maxwell’s equations of the gravitational field generated by vacuum LEM waves, the wave equations of the electromagnetic scalar potential/magnetic vector potential and the constraint equation governing the wave phase-velocities between LEM/TEM waves are discovered. Finally, on the basis of these theoretical research results, the electromagnetic properties of vacuum LEM waves are analyzed in detail, encompassing the speed of light, harmless penetrability to the human body, absorption and stable storage by water, the possibility of generating artificial gravitational fields, and the capability of extracting free energy. This reveals the medical functional mechanism of LEM waves and establishes a solid theoretical basis for the application of LEM waves in the fields of medicine and energy.
基金supported by the National Natural Science Foundation of China(No.22269010,52231007,12327804,T2321003,22088101)the Jiangxi Provincial Natural Science Foundation(No.20224BAB214021)+1 种基金the Major Research Program of Jingdezhen Ceramic Industry(No.2023ZDGG002)the Ministry of Science and Technology of China(973 Project No.2021YFA1200600).
文摘The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave(EMW)absorption materials.However,the loss mechanism in traditional heterostructures is relatively simple,guided by empirical observations,and is not monotonous.In this work,we presented a novel semiconductor-semiconductor-metal heterostructure sys-tem,Mo-MXene/Mo-metal sulfides(metal=Sn,Fe,Mn,Co,Ni,Zn,and Cu),including semiconductor junctions and Mott-Schottky junctions.By skillfully combining these distinct functional components(Mo-MXene,MoS_(2),metal sulfides),we can engineer a multiple heterogeneous interface with superior absorption capabilities,broad effective absorption bandwidths,and ultrathin matching thickness.The successful establishment of semiconductor-semiconductor-metal heterostructures gives rise to a built-in electric field that intensifies electron transfer,as confirmed by density functional theory,which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption.We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductor-semiconductor and semiconductor-metal interfaces.The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide,which achieved remarkable reflection loss values of-70.6 dB at a matching thickness of only 1.885 mm.Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology.This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
基金supported by the National Natural Science Foundation of China(Nos.51872238,21806129,and 52074227)Fundamental Research Funds for the Central Universities(Nos.3102018zy045 and3102019AX11)the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2020JM-118 and2017JQ5116)。
文摘At present,metal-organic framework(MOF)-derived nano-micro architectures are actively explored for electromagnetic(EM)wave absorption owing to their flexible composition and structural manipulation that enhance dielectric and magnetic attenuations.However,the basic design principles in MOF-derived microwave absorption materials have not been summarized.This review is devoted to analyzing design principles in MOF-derived microwave absorption materials from the following perspectives:diverse monomers(ligands and ions of MOFs),topologies,chemical states,and physical properties.The derived essential information regarding the EM wave absorption mechanism and the structural-functional dependency is also comprehensively summarized.Finally,a clear insight into the challenges and perspectives of the industrial revolution upgrading in this promising field is proposed.
基金the National Natural Science Foundation of China(52102372,52162007,52163032)China Postdoctoral Science Foundation(2022M712321)the Jiangsu Province Postdoctoral Research Funding Program(2021K473C).
文摘In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process.As a result,Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell.The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability,which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment.In addition,this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber.The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials.This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20221336)the Jiangsu Agricultural Science and Technology Independent Innovation Fund(No.CX(20)3041)+2 种基金the National Natural Science Foundation of China(No.31971740)the Research Project of the Jiangxi Forestry Bureau(No.202134)the Nanping Science and Technology Planning Project(No.2020Z001)。
文摘Growing electromagnetic pollution has plagued researchers in the field of electromagnetic(EM)energy dissipation for many years;it is increasingly important to solve this problem efficiently.Metal-organic frameworks(MOFs),a shining star of functional materials,have attracted great attention for their advantages,which include highly tunable porosity,structure,and versatility.MOF-derived electromagnetic wave(EMW)absorbers,with advantages such as light weight,thin matching thickness,strong capacity,and wide effective bandwidth,are widely reported.However,current studies lack a systematic summary of the ternary synergistic effects of the precursor component-structure-EMW absorption behavior of MOF derivatives.Here we describe in detail the electromagnetic(EM)energy dissipation mechanism and strategy for preparing MOF-derived EMW absorbers.On the basis of this description,the following means are suggested for adjusting the EM parameters of MOF derivatives,achieving excellent EM energy dissipation:(1)changing the metal and ligands to regulate the chemical composition and morphology of the precursor,(2)controlling pyrolysis parameters(including temperature,heating rate,and gas atmosphere)to manipulate the structure and components of derivatives,and(3)compounding with enhancement phases,including carbon nanomaterials,metals,or other MOFs.
基金supported by the National Natural Science Foundation of China(Grant No.52372283)China Postdoctoral Science Foundation(Grant No.2023M730826)+1 种基金Heilongjiang Postdoctoral Fund(Grant No.LBH-Z23121)Postdoctoral Fellowship Program of CPSF(Grant No.GZC20233425).
文摘Single-atom materials have demonstrated attractive physicochemical characteristics.However,understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge.Herein,a facile waterassisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co–N_(4)–O sites on biomass-derived carbon nanofiber(Co–N_(4)–O/NCF)for electromagnetic wave(EMW)absorption.In such nanofiber,one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction.In-depth experimental and theoretical studies reveal that the axial Co–O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co–N_(4) structure,leading to significantly enhanced dielectric polarization loss relevant to the planar Co–N_(4) sites.Importantly,the film based on Co–N_(4)–O/NCF exhibits light weight,flexibility,excellent mechanical properties,great thermal insulating feature,and excellent EMW absorption with a reflection loss of−45.82 dB along with an effective absorption bandwidth of 4.8 GHz.The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance,and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications.
基金supported by the National Natural Science Foundation of China(No.52071280)the Natural Science Foundation of Hebei Province,China(No.E2020203151)+2 种基金the Research Program of the College Science&Technology of Hebei Province,China(No.ZD2020121)the Cultivation Project for Basic Research and Innovation of Yanshan University(No.2021LGZD016)the Innovation Capability Improvement Project of Hebei province(No.22567605H)。
文摘In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and unique structure,which can meet the requirements of strong reflection loss(RL)and wide absorption bandwidth of EMW absorption materials.In this manuscript,indium nanoparticles/porous carbon(In/C)nanorods composites were prepared via the pyrolysis of nanorods-like In-MOFs at a low temperature of450°C.Indium nanoparticles are evenly attached and embedded on porous carbon.Low electrical conductivity of In/C nanorods is unfavorable to EMW absorption performance,which is due to the low temperature carbonization.Thus,graphene(Gr)nanosheets with high electrical conductivity are introduced to adjust electromagnetic parameters of In/C nanorods for enhancing EMW absorption.The minimum RL of the In/C-Gr-4 composite is up to-43.7 dB with a thin thickness of 1.30 mm.In addition,when the thickness is further reduced to 1.14 mm,the minimum RL of-39.3 dB at 16.1 GHz and effective absorption bandwidth of 3.7 GHz(from 14.3 to 18.0 GHz)can be achieved.This work indicates that In/C-Gr composites show excellent EMW absorption performance.