MXene is considered as a candidate for preparing high-performance electromagnetic wave absorbing materials due to its large specific surface area,rich surface modification groups,and unique metal properties.However,th...MXene is considered as a candidate for preparing high-performance electromagnetic wave absorbing materials due to its large specific surface area,rich surface modification groups,and unique metal properties.However,the impedance matching problem caused by its high conductivity and easy stacking properties is a limiting factor.In this study,a self-assembling-etching-anchoring growth method was proposed to prepare MXene@Co electromagnetic wave absorbing materials.The hollow structure of MXene microspheres constructed with PMMA as a hard template is conducive to optimizing impedance matching and surface modification.In addition,MXene@Co exhibits abundant heterogeneous interfaces,enhancing the interfacial polarization phenomenon during electromagnetic wave absorption.Meanwhile,the surfaceanchored growth of magnetic Co particles forms a magnetic network,which provides a strong magnetic loss capability for the absorber.The hollow structure design significantly enhances the wave absorption performance compared to conventional MXene@Co composites,with a minimum reflection loss of−57.32 dB(effective absorption bandwidth of 5.2 GHz)when the thickness is 2.5 mm(2.2 mm).This work provides a meaningful reference for the design of MXene-based electromagnetic wave absorbing materials.展开更多
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil...Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace.展开更多
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the...Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.展开更多
Metal-organic frameworks(MOFs)derived composites are extremely potential electromagnetic wave(EMW)absorbers.However,the permittivity of absorbers directly derived from MOFs with solid structure is usually relatively l...Metal-organic frameworks(MOFs)derived composites are extremely potential electromagnetic wave(EMW)absorbers.However,the permittivity of absorbers directly derived from MOFs with solid structure is usually relatively low,inevitably limiting their further applications.Cation substitution can primely overcome the problem by regulating the morphology and atomic space occupation to enhance multiple loss mechanisms and impedance matching characteristics.However,universal mechanisms of the effect on EMW absorption performance influenced by cation substitution are still comparatively inadequate,which prospectively requires further exploration.Herein,a series of imidazolic MOFs were fabricated by ultrasonic symbiosis method and tailored by subsequent cation substitution strategy to prepare target porous composites.At a low filling rate and thin thickness,the as-obtained samples reach the optimal reflection loss and effective absorption bandwidth values of–49.81 dB and 7.63 GHz,respectively.The intercoupling between multiple atoms lays a significant foundation for abundant heterogeneous interfaces and defect vacancies,which effectively ameliorate the attenuation mechanisms.Meanwhile,the porous structure introduced by cation substitution reduces the bulk density to enhance the impedance matching and multiple reflections simultaneously.This study provides a helpful idea to exceedingly improve the EMW absorbing performance of imidazolic MOFs-derived composites by cation substitution.展开更多
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT...Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.展开更多
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric const...Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”展开更多
Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres...Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.展开更多
Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic stru...Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.展开更多
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru...Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.展开更多
Rare earth(RE)takes an irreplaceable role in various fields,especially the high-tech electronics industry,which is usually comparable to the vitamin of industry.In the development of electromagnetic wave(EMW)absorptio...Rare earth(RE)takes an irreplaceable role in various fields,especially the high-tech electronics industry,which is usually comparable to the vitamin of industry.In the development of electromagnetic wave(EMW)absorption materials,the participation of RE makes a significant contribution as well,and great progress has been made.Abundant researches have illuminated that the strategy of both doping RE elements and constructing RE oxide composites exhibited huge potential for the fabrication of high-efficiency EMW absorption materials.We believe a systematic summary will be highly desired for a comprehensive understanding and future development.In this review,we first summarized the research background,basic principles,and mechanisms of EMW absorption.Then,we classify the RE EMW absorption materials into RE-doped ferrites,RE-transition metal intermetallics,RE oxides,and other categories,view their current progress by typical studies,and expound their respective features,strengths,weaknesses,and absorption mechanisms.Finally,the current challenges and future outlook of RE EMW absorption materials are highlighted,in the hope of guidance for a sound future development.展开更多
The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrot...The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.展开更多
At present,metal-organic framework(MOF)-derived nano-micro architectures are actively explored for electromagnetic(EM)wave absorption owing to their flexible composition and structural manipulation that enhance dielec...At present,metal-organic framework(MOF)-derived nano-micro architectures are actively explored for electromagnetic(EM)wave absorption owing to their flexible composition and structural manipulation that enhance dielectric and magnetic attenuations.However,the basic design principles in MOF-derived microwave absorption materials have not been summarized.This review is devoted to analyzing design principles in MOF-derived microwave absorption materials from the following perspectives:diverse monomers(ligands and ions of MOFs),topologies,chemical states,and physical properties.The derived essential information regarding the EM wave absorption mechanism and the structural-functional dependency is also comprehensively summarized.Finally,a clear insight into the challenges and perspectives of the industrial revolution upgrading in this promising field is proposed.展开更多
In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which c...In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process.As a result,Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell.The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability,which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment.In addition,this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber.The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials.This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications.展开更多
In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and uni...In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and unique structure,which can meet the requirements of strong reflection loss(RL)and wide absorption bandwidth of EMW absorption materials.In this manuscript,indium nanoparticles/porous carbon(In/C)nanorods composites were prepared via the pyrolysis of nanorods-like In-MOFs at a low temperature of450°C.Indium nanoparticles are evenly attached and embedded on porous carbon.Low electrical conductivity of In/C nanorods is unfavorable to EMW absorption performance,which is due to the low temperature carbonization.Thus,graphene(Gr)nanosheets with high electrical conductivity are introduced to adjust electromagnetic parameters of In/C nanorods for enhancing EMW absorption.The minimum RL of the In/C-Gr-4 composite is up to-43.7 dB with a thin thickness of 1.30 mm.In addition,when the thickness is further reduced to 1.14 mm,the minimum RL of-39.3 dB at 16.1 GHz and effective absorption bandwidth of 3.7 GHz(from 14.3 to 18.0 GHz)can be achieved.This work indicates that In/C-Gr composites show excellent EMW absorption performance.展开更多
High-performance electromagnetic wave absorption and electromagnetic interference(EMI)shielding materials with multifunctional characters have attracted extensive scientific and technological interest,but they remain ...High-performance electromagnetic wave absorption and electromagnetic interference(EMI)shielding materials with multifunctional characters have attracted extensive scientific and technological interest,but they remain a huge challenge.Here,we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti_(3)C_(2)Tx/carbon nanotubes/Co nanoparticles(Ti_(3)C_(2)Tx/CNTs/Co)nanocomposites with an excellent electromagnetic wave absorption,EMI shielding efficiency,flexibility,hydrophobicity,and photother-mal conversion performance.As expected,a strong reflection loss of-85.8 dB and an ultrathin thickness of 1.4 mm were achieved.Mean-while,the high EMI shielding efficiency reached 110.1 dB.The excel-lent electromagnetic wave absorption and shielding performances were originated from the charge carriers,electric/magnetic dipole polariza-tion,interfacial polarization,natural resonance,and multiple internal reflections.Moreover,a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti_(3)C_(2)Tx/CNTs/Co hydrophobic,which can prevent the degradation/oxidation of the MXene in high humidity condition.Interestingly,the Ti_(3)C_(2)Tx/CNTs/Co film exhibited a remark-able photothermal conversion performance with high thermal cycle stability and tenability.Thus,the multifunctional Ti_(3)C_(2)Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding,light-driven heating perfor-mance,and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.展开更多
Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To bre...Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.展开更多
Traditional ceramic materials are generally brittle and not flexible with high production costs,which seriously hinders their practical applications.Multifunctional nanofiber ceramic aerogels are highly desirable for ...Traditional ceramic materials are generally brittle and not flexible with high production costs,which seriously hinders their practical applications.Multifunctional nanofiber ceramic aerogels are highly desirable for applications in extreme environments,however,the integration of multiple functions in their preparation is extremely challenging.To tackle these challenges,we fabricated a multifunctional SiC@SiO_(2) nanofiber aerogel(SiC@SiO_(2) NFA)with a threedimensional(3D)porous cross-linked structure through a simple chemical vapor deposition method and subsequent heat-treatment process.The as-prepared SiC@SiO_(2) NFA exhibits an ultralow density(~11 mg cm^(-3)),ultra-elastic,fatigue-resistant and refractory performance,high temperature thermal stability,thermal insulation properties,and significant strain-dependent piezoresistive sensing behavior.Furthermore,the SiC@SiO_(2) NFA shows a superior electromagnetic wave absorption performance with a minimum refection loss(RL_(min))value of-50.36 d B and a maximum effective absorption bandwidth(EAB_(max))of 8.6 GHz.The successful preparation of this multifunctional aerogel material provides a promising prospect for the design and fabrication of the cutting-edge ceramic materials.展开更多
Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant chal...Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.展开更多
Combining 3D printing with precursor-derived ceramic for fabricating electromagnetic(EM) wave-absorbing metamaterials has attracted great attention. This study presents a novel ultraviolet-curable polysiloxane precurs...Combining 3D printing with precursor-derived ceramic for fabricating electromagnetic(EM) wave-absorbing metamaterials has attracted great attention. This study presents a novel ultraviolet-curable polysiloxane precursor for digital light processing(DLP) 3D printing to fabricate ceramic parts with complex geometry, no cracks and linear shrinkage. Guiding with the principles of impedance matching, attenuation, and effective-medium theory, we design a crosshelix-array metamaterial model based on the complex permittivity constant of precursor-derived ceramics. The corresponding ceramic metamaterials can be successfully prepared by DLP printing and subsequent pyrolysis process, achieving a low reflection coefficient and a wide effective absorption bandwidth in the X-band even under high temperature. This is a general method that can be extended to other bands, which can be realized by merely adjusting the unit structure of meta-materials. This strategy provides a novel and effective avenue to achieve “target-design-fabricating” ceramic metamaterials, and it exposes the downstream applications of highly efficient and broad EM wave-absorbing materials and structures with great potential applications.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51407134,52377026 and 52301192)the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)+2 种基金the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)Special Financial of Shandong Province(Structural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Talent Teams).
文摘MXene is considered as a candidate for preparing high-performance electromagnetic wave absorbing materials due to its large specific surface area,rich surface modification groups,and unique metal properties.However,the impedance matching problem caused by its high conductivity and easy stacking properties is a limiting factor.In this study,a self-assembling-etching-anchoring growth method was proposed to prepare MXene@Co electromagnetic wave absorbing materials.The hollow structure of MXene microspheres constructed with PMMA as a hard template is conducive to optimizing impedance matching and surface modification.In addition,MXene@Co exhibits abundant heterogeneous interfaces,enhancing the interfacial polarization phenomenon during electromagnetic wave absorption.Meanwhile,the surfaceanchored growth of magnetic Co particles forms a magnetic network,which provides a strong magnetic loss capability for the absorber.The hollow structure design significantly enhances the wave absorption performance compared to conventional MXene@Co composites,with a minimum reflection loss of−57.32 dB(effective absorption bandwidth of 5.2 GHz)when the thickness is 2.5 mm(2.2 mm).This work provides a meaningful reference for the design of MXene-based electromagnetic wave absorbing materials.
基金the National Natural Science Foundation of China(No.21902085 and 52172213)Natural Science and Development Foundation of Shenzhen(JCYJ20190807093205660)Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202202015).
文摘Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace.
基金supported by National Natural Science Foundation of China (NSFC 52372041, 52302087, 51772060, 51672059 and 51621091)Heilongjiang Touyan Team Program+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund (SAST2022-60)。
文摘Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
基金supported by the Natural Science Foundation of Sichuan Province(No.2023NSFSC0435)Sichuan Agricultural University College Student Innovation Training Program Project Funding(No.202210626019)Sichuan Agricultural University double support(035–2221993150).
文摘Metal-organic frameworks(MOFs)derived composites are extremely potential electromagnetic wave(EMW)absorbers.However,the permittivity of absorbers directly derived from MOFs with solid structure is usually relatively low,inevitably limiting their further applications.Cation substitution can primely overcome the problem by regulating the morphology and atomic space occupation to enhance multiple loss mechanisms and impedance matching characteristics.However,universal mechanisms of the effect on EMW absorption performance influenced by cation substitution are still comparatively inadequate,which prospectively requires further exploration.Herein,a series of imidazolic MOFs were fabricated by ultrasonic symbiosis method and tailored by subsequent cation substitution strategy to prepare target porous composites.At a low filling rate and thin thickness,the as-obtained samples reach the optimal reflection loss and effective absorption bandwidth values of–49.81 dB and 7.63 GHz,respectively.The intercoupling between multiple atoms lays a significant foundation for abundant heterogeneous interfaces and defect vacancies,which effectively ameliorate the attenuation mechanisms.Meanwhile,the porous structure introduced by cation substitution reduces the bulk density to enhance the impedance matching and multiple reflections simultaneously.This study provides a helpful idea to exceedingly improve the EMW absorbing performance of imidazolic MOFs-derived composites by cation substitution.
基金the National Natural Science Foundation(No.52073187)NSAF Foundation(No.U2230202)for their financial support of this project+3 种基金National Natural Science Foundation(No.51721091)Programme of Introducing Talents of Discipline to Universities(No.B13040)State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-2-03)support of China Scholarship Council
文摘Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work.
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金Joint Fund of Research and Development Program of Henan Province,Grant/Award Number:222301420002National Natural Science Foundation of China,Grant/Award Number:U21A2064Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province,Grant/Award Number:22HASTIT001。
文摘Material composition and structural design are important factors influencing the electromagnetic wave(EMW)absorption performance of materials.To alleviate the impedance mismatch attributed to the high dielectric constant of Ti_(3)C_(2)T_(x)MXene,we have successfully synthesized core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres.This architecture,comprising SiO_(2)as the core,MXene as the intermediate layer,and MoS_(2)as the outer shell,is achieved through an electrostatic self‐assembly method combined with a hydrothermal process.This complex core‐shell structure not only provides a variety of loss mechanisms that effectively dissipate electromagnetic energy but also prevents self‐aggregation of MXene and MoS_(2)nanosheets.Notably,the synergistic combination of SiO_(2)and MoS_(2)with highly conductive MXene enables the suitable dielectric constant of the composites,ensuring optimal impedance matching.Therefore,the core‐shell structured SiO_(2)@MXene@MoS_(2)nanospheres exhibit excellent EMW absorption performance,featuring a remarkable minimum reflection loss(RL_(min))of−52.11 dB(2.4 mm).It is noteworthy that these nanospheres achieve an ultra‐wide effective absorption bandwidth(EAB)of 6.72 GHz.This work provides a novel approach for designing and synthesizing high‐performance EMW absorbers characterized by“wide bandwidth and strong reflection loss.”
基金supported by the National Natural Science Foundation of China(52231007,12327804,T2321003,22088101)this work was supported in part by the National Key Research Program of China under Grant 2021YFA1200600,and Shanghai Sailing Program(22YF1447800).
文摘Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.
基金supported by the National Natural Science Foundation of China under Grant Nos. 52072196, 52002200, 52102106, 52202262, 22379081, 22379080Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+1 种基金the Natural Science Foundation of Shandong Province under Grant Nos. ZR2020QE063, ZR2022ME090, ZR2023QE059. Moreoversupported by the Visiting Scholar Fellowship Funding for Teachers in Shandong Province’s General Undergraduate Institutions
文摘Defect engineering in transition metal oxides semiconductors(TMOs)is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials.However,achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive,posing a substantial challenge to the advancement of TMOs absorbers.The current research describes a process for the deposition of a MoO_(3)layer onto SiC nanowires,achieved via electro-deposition followed by high-temperature calcination.Subsequently,intentional creation of oxygen vacancies within the MoO_(3)layer was carried out,facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material.Remarkably,the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of-50.49 dB at a matching thickness of 1.27 mm.Furthermore,the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm,comprehensively covering the entire Ku band.These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness.SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO_(3)nanocomposite.The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution,which in turn enhances conductivity loss and induced polarization loss capacity.This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
基金funded by the National Natural Science Foundation of China(No.51873004).
文摘Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.
基金financially supported by the National Key R&D Program of China(No.2021YFB3502500)National Natural Science Foundation of China(Nos.22205131 and 22375115)+5 种基金Postdoctoral Innovation Project of Shandong Province(No.SDCX-ZG-202202015)Natural Science Foundation of Shandong Province(Nos.2022HYYQ-014 and ZR2023QE150)Provincial Key Research and Development Program of Shandong(No.2021ZLGX01)“20 Clauses about Colleges and Universities(new)”(Independent Training of Innovation Team)Program of Jinan(No.2021GXRC036)Qilu Young Scholar Program of Shandong University(No.31370082163127)Shenzhen municipal special fund for guiding local scientific and Technological Development(China 2021Szvup071)。
文摘Rare earth(RE)takes an irreplaceable role in various fields,especially the high-tech electronics industry,which is usually comparable to the vitamin of industry.In the development of electromagnetic wave(EMW)absorption materials,the participation of RE makes a significant contribution as well,and great progress has been made.Abundant researches have illuminated that the strategy of both doping RE elements and constructing RE oxide composites exhibited huge potential for the fabrication of high-efficiency EMW absorption materials.We believe a systematic summary will be highly desired for a comprehensive understanding and future development.In this review,we first summarized the research background,basic principles,and mechanisms of EMW absorption.Then,we classify the RE EMW absorption materials into RE-doped ferrites,RE-transition metal intermetallics,RE oxides,and other categories,view their current progress by typical studies,and expound their respective features,strengths,weaknesses,and absorption mechanisms.Finally,the current challenges and future outlook of RE EMW absorption materials are highlighted,in the hope of guidance for a sound future development.
基金This work was supported by the National Natural Science Foundation of China(No.51477002)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2019-028).
文摘The development of 3D structural composites with electromagnetic(EM)wave absorption could attenuate EM waves.Herein,magnetized flower-like Cu_(9)S_(5)/ZnFe_(2)O_(4)composites were fabricated through a multistep hydrothermal method.The crystallographic and surface phase chemical information,morphological structure,and magnetic and EM parameters of the composites were analyzed.The prepared Cu_(9)S_(5)/ZnFe_(2)O_(4)composites have multiple loss paths for EM waves and present an overall 3D flower-like structure.The Cu_(9)S_(5)/ZnFe_(2)O_(4)composites exhibit a minimum reflection loss of-54.38 dB and a broad effective absorption bandwidth of 5.92 GHz.Through magnetization,ZnFe_(2)O_(4)particles are self-assembled and grown on the surfaces of Cu_(9)S_(5).Such a modification is conducive to the generation of additional cross-linking contact sites and the effective introduction of a large number of phase interfaces,crystalline defects,special three-dimensional flower-like structures,and magneto-electrical coupling loss effects.Moreover,the synergistic effect of multiple loss strategies effectively improves EM wave absorption by the material.This work can provide a strategy for the use of magnetizationmodified sulfide composite functional materials in EM wave absorption.
基金supported by the National Natural Science Foundation of China(Nos.51872238,21806129,and 52074227)Fundamental Research Funds for the Central Universities(Nos.3102018zy045 and3102019AX11)the Natural Science Basic Research Plan in Shaanxi Province of China(Nos.2020JM-118 and2017JQ5116)。
文摘At present,metal-organic framework(MOF)-derived nano-micro architectures are actively explored for electromagnetic(EM)wave absorption owing to their flexible composition and structural manipulation that enhance dielectric and magnetic attenuations.However,the basic design principles in MOF-derived microwave absorption materials have not been summarized.This review is devoted to analyzing design principles in MOF-derived microwave absorption materials from the following perspectives:diverse monomers(ligands and ions of MOFs),topologies,chemical states,and physical properties.The derived essential information regarding the EM wave absorption mechanism and the structural-functional dependency is also comprehensively summarized.Finally,a clear insight into the challenges and perspectives of the industrial revolution upgrading in this promising field is proposed.
基金the National Natural Science Foundation of China(52102372,52162007,52163032)China Postdoctoral Science Foundation(2022M712321)the Jiangsu Province Postdoctoral Research Funding Program(2021K473C).
文摘In the present paper,a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance.The inorganic-organic competitive coating strategy was employed,which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process.As a result,Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell.The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability,which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment.In addition,this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber.The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials.This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications.
基金supported by the National Natural Science Foundation of China(No.52071280)the Natural Science Foundation of Hebei Province,China(No.E2020203151)+2 种基金the Research Program of the College Science&Technology of Hebei Province,China(No.ZD2020121)the Cultivation Project for Basic Research and Innovation of Yanshan University(No.2021LGZD016)the Innovation Capability Improvement Project of Hebei province(No.22567605H)。
文摘In recent years,electromagnetic wave(EMW)absorption has been extensively investigated for solving EMW radiation and pollution.The metal-organic frameworks(MOFs)have attracted attention due to their low density and unique structure,which can meet the requirements of strong reflection loss(RL)and wide absorption bandwidth of EMW absorption materials.In this manuscript,indium nanoparticles/porous carbon(In/C)nanorods composites were prepared via the pyrolysis of nanorods-like In-MOFs at a low temperature of450°C.Indium nanoparticles are evenly attached and embedded on porous carbon.Low electrical conductivity of In/C nanorods is unfavorable to EMW absorption performance,which is due to the low temperature carbonization.Thus,graphene(Gr)nanosheets with high electrical conductivity are introduced to adjust electromagnetic parameters of In/C nanorods for enhancing EMW absorption.The minimum RL of the In/C-Gr-4 composite is up to-43.7 dB with a thin thickness of 1.30 mm.In addition,when the thickness is further reduced to 1.14 mm,the minimum RL of-39.3 dB at 16.1 GHz and effective absorption bandwidth of 3.7 GHz(from 14.3 to 18.0 GHz)can be achieved.This work indicates that In/C-Gr composites show excellent EMW absorption performance.
基金supported by the China Postdoctoral Science Foundation(Grant No.2020M671208)National Key Research and Development Program of China(Grant No.2019YFE0122900)+1 种基金National Natural Science Foundation of China(Grant No.51971162,U1933112,51671146)the Program of Shanghai Technology Research Leader(Grant No.18XD1423800)。
文摘High-performance electromagnetic wave absorption and electromagnetic interference(EMI)shielding materials with multifunctional characters have attracted extensive scientific and technological interest,but they remain a huge challenge.Here,we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti_(3)C_(2)Tx/carbon nanotubes/Co nanoparticles(Ti_(3)C_(2)Tx/CNTs/Co)nanocomposites with an excellent electromagnetic wave absorption,EMI shielding efficiency,flexibility,hydrophobicity,and photother-mal conversion performance.As expected,a strong reflection loss of-85.8 dB and an ultrathin thickness of 1.4 mm were achieved.Mean-while,the high EMI shielding efficiency reached 110.1 dB.The excel-lent electromagnetic wave absorption and shielding performances were originated from the charge carriers,electric/magnetic dipole polariza-tion,interfacial polarization,natural resonance,and multiple internal reflections.Moreover,a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti_(3)C_(2)Tx/CNTs/Co hydrophobic,which can prevent the degradation/oxidation of the MXene in high humidity condition.Interestingly,the Ti_(3)C_(2)Tx/CNTs/Co film exhibited a remark-able photothermal conversion performance with high thermal cycle stability and tenability.Thus,the multifunctional Ti_(3)C_(2)Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding,light-driven heating perfor-mance,and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.
基金The authors acknowledge funding from the National Natural Science Foundation of China(Nos.51572157,21902085,and 51702188)Natural Science Foundation of Shandong Province(No.ZR2019QF012)+1 种基金Fundamental Research Funds for the Central Universities(No.2018JC036 and No.2018JC046)Young Scholars Program of Shandong University(No.2018WLJH25).
文摘Modern communication technologies put forward higher requirements for electromagnetic wave(EMW)absorption materials.Metal-organic framework(MOF)derivatives have been widely concerned with its diverse advantages.To break the mindset of magneticderivative design,and make up the shortage of monometallic non-magnetic derivatives,we first try non-magnetic bimetallic MOFs derivatives to achieve efficient EMW absorption.The porous carbon-wrapped TiO2/ZrTiO4 composites derived from PCN-415(TiZr-MOFs)are qualified with a minimum reflection loss of−67.8 dB(2.16 mm,13.0 GHz),and a maximum effective absorption bandwidth of 5.9 GHz(2.70 mm).Through in-depth discussions,the synergy of enhanced interfacial polarization and other attenuation mechanisms in the composites is revealed.Therefore,this work confirms the huge potentials of nonmagnetic bimetallic MOFs derivatives in EMW absorption applications.
基金financially supported by the National Natural Science Foundation of China(No.U2004177 and U21A2064)Outstanding Youth Fund of Henan Province(No.212300410081)+1 种基金Scientific and Technological Innovation Talents in Colleges and Universities in Henan Province(22HASTIT001)The Research and Entrepreneurship Start-up Projects for Overseas Returned Talents。
文摘Traditional ceramic materials are generally brittle and not flexible with high production costs,which seriously hinders their practical applications.Multifunctional nanofiber ceramic aerogels are highly desirable for applications in extreme environments,however,the integration of multiple functions in their preparation is extremely challenging.To tackle these challenges,we fabricated a multifunctional SiC@SiO_(2) nanofiber aerogel(SiC@SiO_(2) NFA)with a threedimensional(3D)porous cross-linked structure through a simple chemical vapor deposition method and subsequent heat-treatment process.The as-prepared SiC@SiO_(2) NFA exhibits an ultralow density(~11 mg cm^(-3)),ultra-elastic,fatigue-resistant and refractory performance,high temperature thermal stability,thermal insulation properties,and significant strain-dependent piezoresistive sensing behavior.Furthermore,the SiC@SiO_(2) NFA shows a superior electromagnetic wave absorption performance with a minimum refection loss(RL_(min))value of-50.36 d B and a maximum effective absorption bandwidth(EAB_(max))of 8.6 GHz.The successful preparation of this multifunctional aerogel material provides a promising prospect for the design and fabrication of the cutting-edge ceramic materials.
基金supported by the National Natural Science Foundation of China(Nos.51725101,11727807,51672050,61790581,22088101)the Ministry of Science and Technology of China(973 Project Nos.2018YFA0209102 and 2021YFA1200600)Infrastructure and Facility Construction Project of Zhejiang Laboratory.
文摘Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.
基金supported by the National Science Fund for Distinguished Young Scholars(52025034)National Natural Science Foundation of China(21975204)Innovation Team of Shaanxi Sanqin Scholars。
文摘Combining 3D printing with precursor-derived ceramic for fabricating electromagnetic(EM) wave-absorbing metamaterials has attracted great attention. This study presents a novel ultraviolet-curable polysiloxane precursor for digital light processing(DLP) 3D printing to fabricate ceramic parts with complex geometry, no cracks and linear shrinkage. Guiding with the principles of impedance matching, attenuation, and effective-medium theory, we design a crosshelix-array metamaterial model based on the complex permittivity constant of precursor-derived ceramics. The corresponding ceramic metamaterials can be successfully prepared by DLP printing and subsequent pyrolysis process, achieving a low reflection coefficient and a wide effective absorption bandwidth in the X-band even under high temperature. This is a general method that can be extended to other bands, which can be realized by merely adjusting the unit structure of meta-materials. This strategy provides a novel and effective avenue to achieve “target-design-fabricating” ceramic metamaterials, and it exposes the downstream applications of highly efficient and broad EM wave-absorbing materials and structures with great potential applications.