On the basis of the study of transient eddy current field in the end region of turbogenerator and electromagnetic force of end region winding, this paper analyzes the electromagnetic vibration of the turbogenerator r...On the basis of the study of transient eddy current field in the end region of turbogenerator and electromagnetic force of end region winding, this paper analyzes the electromagnetic vibration of the turbogenerator roundly. A 320 MW turbogenerator is taken as an example to specify the electromagnetic force of end region winding and therefore the vibration in the case that the generator is affected by impact load. Some conclusions are drawn on the basis of the specification. Vibration of windings under imaginary faults is simulated, so that the vibration law of the end winding of turbogenerator can be studied further. On the basis of this, the countermeasure against winding vibration can be advanced.展开更多
In this paper, the boundary value problem (BVP) of 3 D transient eddy current field in the end region in the case that the generator is affected by impact load is specified. Besides, ways to implement discrete method...In this paper, the boundary value problem (BVP) of 3 D transient eddy current field in the end region in the case that the generator is affected by impact load is specified. Besides, ways to implement discrete methods in both time domain and space domain during the solution of the problem are investigated. The Crank Nicolson scheme is utilized to attain the iterative format of time differential, after taking factors that can ensure both computation precision and stability into consideration. In this paper, the magnetic distribution in the end region of a turbogenerator in the case that the generator is affected by impact load is specified. As a result, it provides foundation for further study of electromagnetic force and electromagnetic vibration in the end region of the turbogenerator.展开更多
The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration freque...The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration frequencies and the microstructures were observed.The average size of grains was quantitatively measured as a function of vibration frequencies. Moreover,the grain size distribution was outlined versus number fraction.A novel model was proposed to account for the microstructure formation and grain refinement when considering the significant difference of the electrical resistivity properties of the solid and the liquid during EMV processing in the semisolid state.The remarkable difference originates uncoupled movement between the mobile solid and the sluggish liquid,which can activate melt flow.The microstructure evolution can be well explained when the fluid flow intensity versus vibration frequency is taken into account.Moreover,the influence of the static magnetic field on texture formation is also considered,which plays an important role at higher vibration frequencies.展开更多
Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isola...Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.展开更多
An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of e...An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of eutectic Al-Si alloy have been investigated experimentally. It is found that the eutectic structure has been refined by solely imposing high magnetic field while it is coarsened under the electromagnetic vibration. Furthermore, polyhedral Si grains and non-dendritic α-Al appeared when the electromagnetic vibration strength was strong enough. The refining of eutectic structure is attributed to the decrease of diffusion coefficient caused by the strong magnetic field. The coarseness of eutectic structure may be attributed to the convection caused by electromagnetic vibration. Strong convection may break co-operative growth of eutectic phases to form polyhedral Si grains and non-dendritic α-Al.展开更多
Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of ...Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of high-performance PMSM for electric vehicles.A fast and accurate magnetic field calculation model for interior permanent magnet synchronous machine(IPMSM)is proposed in this article.Based on the traditional magnetic potential permeance method,the stator cogging effect and complex boundary conditions of the IPMSM can be fully considered in this model,so as to realize the rapid calculation of equivalent magnetomotive force(MMF),air gap permeance,and other key electromagnetic properties.In this article,a 6-pole 36-slot IPMSM is taken as an example to establish its equivalent solution model,thereby the cogging torque is accurately calculated.And the validity of this model is verified by a variety of different magnetic pole structures,pole slot combinations machines,and prototype experiments.In addition,the improvement measure of the machine with different combination of pole arc coefficient is also studied based on this model.Cogging torque and electromagnetic vibration can be effectively weakened.Combined with the finite element model and multi-physics coupling model,the electromagnetic characteristics and vibration performance of this machine are comprehensively compared and analyzed.The analysis results have well verified its effectiveness.It can be extended to other structures or types of PMSM and has very important practical value and research significance.展开更多
Microstructure evolutions of an AZ80 magnesium alloy ingot with 300 mm in diameter cast with and without the electromagnetic vibration was investigated. The microstructures of the ingot cast with the conventional DC e...Microstructure evolutions of an AZ80 magnesium alloy ingot with 300 mm in diameter cast with and without the electromagnetic vibration was investigated. The microstructures of the ingot cast with the conventional DC exhibited relatively fine dendritic grains at the surface area, but coarse dendritic grains at the 1/2 radius and large equiaxed dendritic grains at the center. However, under the electromagnetic vibration casting condition, the microstructures of the ingot is significantly refined, especially those at the surface and at the center.展开更多
The effects of electromagnetic vibration on the grain refinement in directional solid- ification were investigated. It was found that the electromagnetic vibration applied in the melt not only can refine grains remark...The effects of electromagnetic vibration on the grain refinement in directional solid- ification were investigated. It was found that the electromagnetic vibration applied in the melt not only can refine grains remarkably but also can enhance both tensile strength and ductility values of Al-6%Si alloy. SEM graphs show that coarse dendrite structure was broken up into a somewhat globular structure, and the morphology of eutectic silicon was changed from flaky to fibrous under electromagnetic vibration treatment. The refine mechanism under electromagnetic vibration was discussed.展开更多
The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action ...The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab.展开更多
The effects of a low frequency electromagnetic field and a low frequency electromagnetic vibration field applied during DC casting of AZ80 Mg on microstructures and alloying element distribution in ingots were investi...The effects of a low frequency electromagnetic field and a low frequency electromagnetic vibration field applied during DC casting of AZ80 Mg on microstructures and alloying element distribution in ingots were investigated.The experiments were performed both in absence and in the presence of the magnetic fields.In DC casting,the ingot exhibited coarse microstructure and severe segregation of Al.In the presence of solo low frequency alternating magnetic field,namely LFEC,the grains of the ingot was effectively refined and the segregation of Al was significantly decreased.In LFEVC,namely low frequency electromagnetic vibration casting,the ingot were significantly refined and the segregation was suppressed.With increasing the vibration intensities,the grain refinement and segregation suppression were increased.展开更多
A continuum based model is presented which identifies a favorable set of operational conditions whereby an effective and efficient electromagnetically induced vibratory motion can proceed within an induction system.Sp...A continuum based model is presented which identifies a favorable set of operational conditions whereby an effective and efficient electromagnetically induced vibratory motion can proceed within an induction system.Specifically, an analytical assessment is presented for the electromagnetic field and the electromagnetically induced acoustic field, with parametric factors incorporated into the model to permit a normal modes solution for the acoustic field which here is sensitive to the compliance of both the molten metal and the wall,as well as electromagnetic properties of the metal.A parametric analysis is presented which identifies the importance of matching the mechanical impedances of the melt-wall configuration so that the generation of acoustic energy within the melt system can be more effectively utilized.Relatively straight-forward calculations,presented for the acoustic field,may provide a more computationally efficient means for implementing process simulation studies for these systems.展开更多
To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without...To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without changing the original driving circuit,the alternating current(AC)equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information,and then a simple and reliable velocity feedback control system is established.Through the study of the effect of different values of key parameters on the system,we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration,resulting in an enhanced harmonic suppression capability of velocity feedback control.We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods.In the frequency range of 0.01-1.00 Hz,without using any sensors,the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40%compared to open-loop control and by about 20%compared to a conventional sensorless feedback control method.展开更多
The effects of electromagnetic vibration (EMV) on the refinement and migration of primary silicons in the A1-18 wt pct Si alloy were investigated systematically. It was found that EMV could effectively refine primar...The effects of electromagnetic vibration (EMV) on the refinement and migration of primary silicons in the A1-18 wt pct Si alloy were investigated systematically. It was found that EMV could effectively refine primary silicons. The equivalent diameter of primary silicon first decreases slowly with the current increasing from 1 A to 3 A, but then drops rapidly between 3 A and 10 A, next gradually decreases with increasing current intensity. When the EMV intensity was low, the primary silicons were agglomerated and expelled to the top of a sample, the segregation of silicon grains gradually decreased and the agglomerating phenomena disappeared with the increase of EMV intensity, and the star-like coarse primary silicons turned refined flake or square morphology. The refinement and migration of primary silicons depended on the Lorentz force, gravity and the effective viscous force.展开更多
With the rapid development of microelectronics and flexible electronics technology,self-powered sensors have significant application prospects in human-machine interface systems and Internet of Things.However,piezoele...With the rapid development of microelectronics and flexible electronics technology,self-powered sensors have significant application prospects in human-machine interface systems and Internet of Things.However,piezoelectric-and triboelectricbased sensors have low current output and are easily affected,while electromagnetic-based sensors are difficult to miniaturize.This work proposes a high-density stacked microcoil integrated microminiaturized electromagnetic vibration energy harvester(EVEH).The double-layer high-density microcoil is fabricated on both sides of the flexible polyimide substrate interconnected via the central through-hole.Owing to reduced single coil line width,line spacing,and stacked structure,the number of turns can be substantially enhanced.Moreover,the relative position of the coils and magnet has a considerable influence on the performances;due to the huge change rate in magnetic flux when the coil is placed in the radial direction of the magnet than in the axial direction,the open-circuit voltage in the radial direction is 10 times greater.The microcoil can maintain good performance at high,low temperatures and under bending conditions.When the distance between the ends of the coil changes from 2 to 20 mm in 2 mm steps,the bending angle of the coil changes from 45°to 270°in 45°steps;furthermore,when the coil is exposed to-40and 60℃conditions,the coil resistance is maintained at approximately 447Ω.The peak open-circuit voltage of three-piece microcoils reaches 0.41 V at 4 Hz under 2g,and the output voltage and current increase with an increasing number of stacked layers.These excellent properties indicate that EVEH can be used for self-powered acceleration sensing.The sensitivity is measured to be 0.016 V/(m/s^(2))with a correlation coefficient of 0.979 over the acceleration range of 1–18 m/s^(2).Thus,the developed microminiaturized EVEH has enormous potential for self-powered sensing applications in confined spaces and harsh environments.展开更多
A micromachining technique is presented for the fabrication of resin-bonded permanent magnets in the microscale.Magnetic paste is prepared from NdFeB powder and an epoxy resin,filled into lithographically defined phot...A micromachining technique is presented for the fabrication of resin-bonded permanent magnets in the microscale.Magnetic paste is prepared from NdFeB powder and an epoxy resin,filled into lithographically defined photoresist molds or metal molds,and formed into resin-bonded magnets after curing at room temperature.A coercivity of 772.4 kA/m,a remanence of 0.27 T,and a maximum energy product of 22.6 kJ/m3 have been achieved in an NdFeB disk micromagnet with dimensions of Ф200 μm×70 μm.Based on the developed micro-patterning of resin-bonded magnets,a fully integrated electromagnetic vibration energy harvester has been designed and fabricated.The dimensions of the energy harvester are only 4.5 mm×4.5 mm×1.0 mm,and those of the micromagnet are 1.5 mm×1.5 mm×0.2 mm.This microfabrication technique can be used for producing permanent magnets tens or hundreds of micrometers in size for use in various magnetic devices.展开更多
The voltage was recorded to investigate the influence of the static magnetic field on droplet evolution during the mag-netically controlled electroslag remelting (MC-ESR) process. MC-ESR experiments were carried out...The voltage was recorded to investigate the influence of the static magnetic field on droplet evolution during the mag-netically controlled electroslag remelting (MC-ESR) process. MC-ESR experiments were carried out under differentremelting current, and transverse static magnetic fields (TSMF) of 85 mT, 130 mT and 160 mT were superimposed.Statistical work was performed to obtain the quantitative data of the droplets. The ASPEX Explorer was utilized toinvestigate the inclusions evolution of GCr15 ingots. The number of the droplets was 31 in 20 s during the traditional ESRprocess and reached 50 and 51 under the MC-ESR process with the TSMF of 85 mT and 130 mT, respectively. Whencompared the traditional ESR process with the MC-ESR process, the inclusions amount reduced 67%.展开更多
The Electroslag Remelting(ESR)Process has been developed quickly in recent years for its productions of excellent metal ingots with high purity,compact structure,homogeneous composition and clean surface.However,some ...The Electroslag Remelting(ESR)Process has been developed quickly in recent years for its productions of excellent metal ingots with high purity,compact structure,homogeneous composition and clean surface.However,some problems in traditional ESR process still exist,for example the nonmetallic inclusions,coarse dendrite crystal and solute segregation in large-scale ESR etc.In this study we combine the ESR process with electromagnetic processing of materials(EPM)process in GCr15 steel under conditions of 400-700 amps current.The microstructure and inclusions analysis showed that,the inner structure of ingots is compact and homogeneous and no remarkable inclusions appear when superimposing static magnetic field simultaneously.Refined branch grain size,homogeneous distribution of solute, decreased concentration of inclusions and impurities and elevated hardness also could be achieved.ESR process under steady magnetic field makes melt pool planer when compared with that without magnetic field,which would be explained by the electromagnetic vibration refined metal melting drops and the temperature field in the pool is uniformity.展开更多
The motion of an inductively heated fluid volume of cylindrical shape is assessed based on time dependent oscillatory components of the Lorentz force.The applications considered include vibratory motion in a channel i...The motion of an inductively heated fluid volume of cylindrical shape is assessed based on time dependent oscillatory components of the Lorentz force.The applications considered include vibratory motion in a channel induction furnace and vibratory motion in an electromagnetically excited direct chill casting.The governing equations for the resulting magnetoacoustic problem are presented with the acoustic field solutions expressed in terms of normal modes. Closed form expressions are developed for the velocity,pressure and phase relationships between the excitation and the response.Calculations are prescribed for the pressure in both the channel furnace and the direct chill casting,with the calculational results from the casting application suggesting that,roughly,a two-fold increase in the effective peak acoustic pressure can be achieved by superimposing on the AC electromagnetic field a DC magnetic field of strength sufficient to match the peak alternating magnetic field.A procedure is also outlined for developing field descriptions of the velocity and pressure which can be effected in a MATLAB environ.展开更多
文摘On the basis of the study of transient eddy current field in the end region of turbogenerator and electromagnetic force of end region winding, this paper analyzes the electromagnetic vibration of the turbogenerator roundly. A 320 MW turbogenerator is taken as an example to specify the electromagnetic force of end region winding and therefore the vibration in the case that the generator is affected by impact load. Some conclusions are drawn on the basis of the specification. Vibration of windings under imaginary faults is simulated, so that the vibration law of the end winding of turbogenerator can be studied further. On the basis of this, the countermeasure against winding vibration can be advanced.
文摘In this paper, the boundary value problem (BVP) of 3 D transient eddy current field in the end region in the case that the generator is affected by impact load is specified. Besides, ways to implement discrete methods in both time domain and space domain during the solution of the problem are investigated. The Crank Nicolson scheme is utilized to attain the iterative format of time differential, after taking factors that can ensure both computation precision and stability into consideration. In this paper, the magnetic distribution in the end region of a turbogenerator in the case that the generator is affected by impact load is specified. As a result, it provides foundation for further study of electromagnetic force and electromagnetic vibration in the end region of the turbogenerator.
文摘The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration frequencies and the microstructures were observed.The average size of grains was quantitatively measured as a function of vibration frequencies. Moreover,the grain size distribution was outlined versus number fraction.A novel model was proposed to account for the microstructure formation and grain refinement when considering the significant difference of the electrical resistivity properties of the solid and the liquid during EMV processing in the semisolid state.The remarkable difference originates uncoupled movement between the mobile solid and the sluggish liquid,which can activate melt flow.The microstructure evolution can be well explained when the fluid flow intensity versus vibration frequency is taken into account.Moreover,the influence of the static magnetic field on texture formation is also considered,which plays an important role at higher vibration frequencies.
基金the National Natural Science Foundation of China(No.52175125)。
文摘Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.
基金supported by the National Natural Science Foundation of China(No.59871026)
文摘An electromagnetic vibration was generated by simultaneously imposing a strong static magnetic field (up to 10 T) and an alternative electricity current to the metal. Its effects on the solidification structure of eutectic Al-Si alloy have been investigated experimentally. It is found that the eutectic structure has been refined by solely imposing high magnetic field while it is coarsened under the electromagnetic vibration. Furthermore, polyhedral Si grains and non-dendritic α-Al appeared when the electromagnetic vibration strength was strong enough. The refining of eutectic structure is attributed to the decrease of diffusion coefficient caused by the strong magnetic field. The coarseness of eutectic structure may be attributed to the convection caused by electromagnetic vibration. Strong convection may break co-operative growth of eutectic phases to form polyhedral Si grains and non-dendritic α-Al.
基金supported in part by the National Natural Science Foundation of China under Grant 51737008.
文摘Cogging torque and electromagnetic vibration are two important factors for evaluating permanent magnet synchronous machine(PMSM)and are key issues that must be considered and resolved in the design and manufacture of high-performance PMSM for electric vehicles.A fast and accurate magnetic field calculation model for interior permanent magnet synchronous machine(IPMSM)is proposed in this article.Based on the traditional magnetic potential permeance method,the stator cogging effect and complex boundary conditions of the IPMSM can be fully considered in this model,so as to realize the rapid calculation of equivalent magnetomotive force(MMF),air gap permeance,and other key electromagnetic properties.In this article,a 6-pole 36-slot IPMSM is taken as an example to establish its equivalent solution model,thereby the cogging torque is accurately calculated.And the validity of this model is verified by a variety of different magnetic pole structures,pole slot combinations machines,and prototype experiments.In addition,the improvement measure of the machine with different combination of pole arc coefficient is also studied based on this model.Cogging torque and electromagnetic vibration can be effectively weakened.Combined with the finite element model and multi-physics coupling model,the electromagnetic characteristics and vibration performance of this machine are comprehensively compared and analyzed.The analysis results have well verified its effectiveness.It can be extended to other structures or types of PMSM and has very important practical value and research significance.
文摘Microstructure evolutions of an AZ80 magnesium alloy ingot with 300 mm in diameter cast with and without the electromagnetic vibration was investigated. The microstructures of the ingot cast with the conventional DC exhibited relatively fine dendritic grains at the surface area, but coarse dendritic grains at the 1/2 radius and large equiaxed dendritic grains at the center. However, under the electromagnetic vibration casting condition, the microstructures of the ingot is significantly refined, especially those at the surface and at the center.
基金supported by National Natural Science Foundation of China(No.59871026)the Science and Technology Committee of Shanghai (04ZD14002)
文摘The effects of electromagnetic vibration on the grain refinement in directional solid- ification were investigated. It was found that the electromagnetic vibration applied in the melt not only can refine grains remarkably but also can enhance both tensile strength and ductility values of Al-6%Si alloy. SEM graphs show that coarse dendrite structure was broken up into a somewhat globular structure, and the morphology of eutectic silicon was changed from flaky to fibrous under electromagnetic vibration treatment. The refine mechanism under electromagnetic vibration was discussed.
基金Project(50674066)supported by the National Natural Science Foundation of China
文摘The solidified structures of horizontally continuous casting(HCC) of super-thin slab and its relations with the current were studied under the electromagnetic vibration(EMV).The results show that,under the action of the periodical forces from EMV,the solidified structures of the super-thin slab of pure tin is greatly refined,and the extent of grain refinement is increased with the magnitude of alternating current.For the Sn-10%Pb alloy,it is shown that the EMV promotes the growth of equiaxed grains in the center of super-thin slab,and the grains are refined with the alternating current increasing.This is useful to prevent some solidification defects in the horizontally continuous casting of super-thin slab,such as columnar grains butting,porosity,inclusions and gases gathering,and composition segregation in the centre of slab.
基金This work is financially supported by the Emphasis Project Fund of National Eleven Five-Year Scientific and Technical Support Plans ( No 2006BAE04B02)the National Natural Science Foundation of Chi-na ( No 50574028)+1 种基金the Programme of Introducing Talents of Discipline to Universities(No B07015) the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(No 704015)
文摘The effects of a low frequency electromagnetic field and a low frequency electromagnetic vibration field applied during DC casting of AZ80 Mg on microstructures and alloying element distribution in ingots were investigated.The experiments were performed both in absence and in the presence of the magnetic fields.In DC casting,the ingot exhibited coarse microstructure and severe segregation of Al.In the presence of solo low frequency alternating magnetic field,namely LFEC,the grains of the ingot was effectively refined and the segregation of Al was significantly decreased.In LFEVC,namely low frequency electromagnetic vibration casting,the ingot were significantly refined and the segregation was suppressed.With increasing the vibration intensities,the grain refinement and segregation suppression were increased.
文摘A continuum based model is presented which identifies a favorable set of operational conditions whereby an effective and efficient electromagnetically induced vibratory motion can proceed within an induction system.Specifically, an analytical assessment is presented for the electromagnetic field and the electromagnetically induced acoustic field, with parametric factors incorporated into the model to permit a normal modes solution for the acoustic field which here is sensitive to the compliance of both the molten metal and the wall,as well as electromagnetic properties of the metal.A parametric analysis is presented which identifies the importance of matching the mechanical impedances of the melt-wall configuration so that the generation of acoustic energy within the melt system can be more effectively utilized.Relatively straight-forward calculations,presented for the acoustic field,may provide a more computationally efficient means for implementing process simulation studies for these systems.
基金Project supported by the Natural Science Foundation of Heilongjiang Province,China(No.LH2021E060)the National Natural Science Foundation of China(No.52075133)the CGN-HIT Advanced Nuclear and New Energy Research Institute,China(No.CGN-HIT202215)。
文摘To realize low harmonic distortion of the vibration waveform output from electromagnetic vibrators,we propose a vibration harmonic suppression technology based on an improved sensorless feedback control method.Without changing the original driving circuit,the alternating current(AC)equivalent resistance of the driving coil is used to obtain high-precision vibration velocity information,and then a simple and reliable velocity feedback control system is established.Through the study of the effect of different values of key parameters on the system,we have achieved an effective expansion of the velocity characteristic frequency band of low-frequency vibration,resulting in an enhanced harmonic suppression capability of velocity feedback control.We present extensive experiments to prove the effectiveness of the proposed method and make comparisons with conventional control methods.In the frequency range of 0.01-1.00 Hz,without using any sensors,the method proposed in this study can reduce the harmonic distortion of the vibration waveform by about 40%compared to open-loop control and by about 20%compared to a conventional sensorless feedback control method.
基金supported by the Major Special Program of Shanghai,China (No.08DZ1130100)Shanghai Postdoctoral Sustentation Fund,China (No.10R21413100)
文摘The effects of electromagnetic vibration (EMV) on the refinement and migration of primary silicons in the A1-18 wt pct Si alloy were investigated systematically. It was found that EMV could effectively refine primary silicons. The equivalent diameter of primary silicon first decreases slowly with the current increasing from 1 A to 3 A, but then drops rapidly between 3 A and 10 A, next gradually decreases with increasing current intensity. When the EMV intensity was low, the primary silicons were agglomerated and expelled to the top of a sample, the segregation of silicon grains gradually decreased and the agglomerating phenomena disappeared with the increase of EMV intensity, and the star-like coarse primary silicons turned refined flake or square morphology. The refinement and migration of primary silicons depended on the Lorentz force, gravity and the effective viscous force.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFE0120300)the National Natural Science Foundation of China(Grant Nos.52175554,62171414,52205608)+1 种基金the Fundamental Research Program of Shanxi Province(Grant No.202103021223201)the Young Top Talent Project of Hebei Provincial Department of Education(Grant No.BJK2023116)。
文摘With the rapid development of microelectronics and flexible electronics technology,self-powered sensors have significant application prospects in human-machine interface systems and Internet of Things.However,piezoelectric-and triboelectricbased sensors have low current output and are easily affected,while electromagnetic-based sensors are difficult to miniaturize.This work proposes a high-density stacked microcoil integrated microminiaturized electromagnetic vibration energy harvester(EVEH).The double-layer high-density microcoil is fabricated on both sides of the flexible polyimide substrate interconnected via the central through-hole.Owing to reduced single coil line width,line spacing,and stacked structure,the number of turns can be substantially enhanced.Moreover,the relative position of the coils and magnet has a considerable influence on the performances;due to the huge change rate in magnetic flux when the coil is placed in the radial direction of the magnet than in the axial direction,the open-circuit voltage in the radial direction is 10 times greater.The microcoil can maintain good performance at high,low temperatures and under bending conditions.When the distance between the ends of the coil changes from 2 to 20 mm in 2 mm steps,the bending angle of the coil changes from 45°to 270°in 45°steps;furthermore,when the coil is exposed to-40and 60℃conditions,the coil resistance is maintained at approximately 447Ω.The peak open-circuit voltage of three-piece microcoils reaches 0.41 V at 4 Hz under 2g,and the output voltage and current increase with an increasing number of stacked layers.These excellent properties indicate that EVEH can be used for self-powered acceleration sensing.The sensitivity is measured to be 0.016 V/(m/s^(2))with a correlation coefficient of 0.979 over the acceleration range of 1–18 m/s^(2).Thus,the developed microminiaturized EVEH has enormous potential for self-powered sensing applications in confined spaces and harsh environments.
基金Project supported by the National Natural Science Foundation of China (No. 51007001)the 211 Project of Anhui Universitythe Start Up Grant for Doctor’s Research of Anhui University,China
文摘A micromachining technique is presented for the fabrication of resin-bonded permanent magnets in the microscale.Magnetic paste is prepared from NdFeB powder and an epoxy resin,filled into lithographically defined photoresist molds or metal molds,and formed into resin-bonded magnets after curing at room temperature.A coercivity of 772.4 kA/m,a remanence of 0.27 T,and a maximum energy product of 22.6 kJ/m3 have been achieved in an NdFeB disk micromagnet with dimensions of Ф200 μm×70 μm.Based on the developed micro-patterning of resin-bonded magnets,a fully integrated electromagnetic vibration energy harvester has been designed and fabricated.The dimensions of the energy harvester are only 4.5 mm×4.5 mm×1.0 mm,and those of the micromagnet are 1.5 mm×1.5 mm×0.2 mm.This microfabrication technique can be used for producing permanent magnets tens or hundreds of micrometers in size for use in various magnetic devices.
基金financial support of the National Key Research and Development Program of China(No.2016YFB0300401)the National Natural Science Foundation of China(Nos.U1732276 and 51704193)+2 种基金the General Financial Grant from the China Postdoctoral Science Foundation(No.2017M621431)the Science and Technology Commission of Shanghai Municipality(No.15520711000)Independent Research and Development Project of State Key of Advanced Special Steel,Shanghai University(SKLASS2015-Z021,SELF-2014-02)
文摘The voltage was recorded to investigate the influence of the static magnetic field on droplet evolution during the mag-netically controlled electroslag remelting (MC-ESR) process. MC-ESR experiments were carried out under differentremelting current, and transverse static magnetic fields (TSMF) of 85 mT, 130 mT and 160 mT were superimposed.Statistical work was performed to obtain the quantitative data of the droplets. The ASPEX Explorer was utilized toinvestigate the inclusions evolution of GCr15 ingots. The number of the droplets was 31 in 20 s during the traditional ESRprocess and reached 50 and 51 under the MC-ESR process with the TSMF of 85 mT and 130 mT, respectively. Whencompared the traditional ESR process with the MC-ESR process, the inclusions amount reduced 67%.
基金Item Sponsored by Ministry of Major Science and Technology of Shanghai[No.09dz120640108DZ1130100]National High Technology Research and Development Program 863[2009AA03Z109]
文摘The Electroslag Remelting(ESR)Process has been developed quickly in recent years for its productions of excellent metal ingots with high purity,compact structure,homogeneous composition and clean surface.However,some problems in traditional ESR process still exist,for example the nonmetallic inclusions,coarse dendrite crystal and solute segregation in large-scale ESR etc.In this study we combine the ESR process with electromagnetic processing of materials(EPM)process in GCr15 steel under conditions of 400-700 amps current.The microstructure and inclusions analysis showed that,the inner structure of ingots is compact and homogeneous and no remarkable inclusions appear when superimposing static magnetic field simultaneously.Refined branch grain size,homogeneous distribution of solute, decreased concentration of inclusions and impurities and elevated hardness also could be achieved.ESR process under steady magnetic field makes melt pool planer when compared with that without magnetic field,which would be explained by the electromagnetic vibration refined metal melting drops and the temperature field in the pool is uniformity.
基金the Center for International Programs at the University of Dayton for support that facilitated collaborative aspects of this study
文摘The motion of an inductively heated fluid volume of cylindrical shape is assessed based on time dependent oscillatory components of the Lorentz force.The applications considered include vibratory motion in a channel induction furnace and vibratory motion in an electromagnetically excited direct chill casting.The governing equations for the resulting magnetoacoustic problem are presented with the acoustic field solutions expressed in terms of normal modes. Closed form expressions are developed for the velocity,pressure and phase relationships between the excitation and the response.Calculations are prescribed for the pressure in both the channel furnace and the direct chill casting,with the calculational results from the casting application suggesting that,roughly,a two-fold increase in the effective peak acoustic pressure can be achieved by superimposing on the AC electromagnetic field a DC magnetic field of strength sufficient to match the peak alternating magnetic field.A procedure is also outlined for developing field descriptions of the velocity and pressure which can be effected in a MATLAB environ.