期刊文献+
共找到3,641篇文章
< 1 2 183 >
每页显示 20 50 100
基于CEEMDAN-QPSO-BLS模型的径流预测研究 被引量:2
1
作者 刘扬 赵丽 《中国农村水利水电》 北大核心 2024年第1期101-108,共8页
准确的径流预测是水资源优化配置和高效利用的前提,是制定防洪减灾决策的基础,然而受到人类活动、环境、气候等因素的影响,径流序列呈现出非线性、非稳态、多尺度变化的特点,这为径流的精准预测增加了难度。为提高径流预测的精准度和可... 准确的径流预测是水资源优化配置和高效利用的前提,是制定防洪减灾决策的基础,然而受到人类活动、环境、气候等因素的影响,径流序列呈现出非线性、非稳态、多尺度变化的特点,这为径流的精准预测增加了难度。为提高径流预测的精准度和可信度,结合自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)方法,量子粒子群优化算法(Quantum Particle Swarm Optimization,QPSO)、宽度学习系统(Broad Learning System,BLS)模型,提出了一种基于CEEMDAN-QPSO-BLS组合式的径流预测模型。该组合模型首先使用CEEMDAN方法对原始径流信号进行分解,得到若干相对平稳的本征模态分量。其次利用QPSO算法对BLS模型的特征层节点组数、增强层节点组数和组内节点数进行寻优,得到最优的宽度学习网络拓扑结构,进而使用最优的QPSOBLS对多个稳态分量进行预测,并对预测分量进行重构,从而获得更高的预测精度。以黄河流域小浪底水库的日径流值为实验数据,将EMD-QPSO-BLS、QPSO-BLS作为CEEMDAN-QPSO-BLS的对比模型,并采用纳什效率系数(NSE)、均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)作为模型预测可信度和精准度的评价指标。实验表明,在预见期4天内,与QPSO-BLS、EMD-QPSO-BLS模型相比,CEEMDAN-QPSO-BLS的预测精准度分别提高了79.87%、19.80%,可信度分别提高了131.2%、10.98%,径流预测精度的提高,可为防洪抗旱保护人民生命财产和可持续发展提供决策支持。 展开更多
关键词 径流预测 宽度学习 量子粒子群 CEemdAN emd
下载PDF
基于EMD和小波包变换的天气雷达回波去噪方法
2
作者 李静 华夏 +1 位作者 刘佳 丁妍 《自动化技术与应用》 2024年第10期108-111,共4页
C波段多普勒天气雷达回波数据由雷达回波信号和噪声构成,噪声严重影响雷达基本反射率的准确性。利用EMD方法对雷达回波信号进行分解后,将含有噪声的高频IMF分量去除,可实现去噪,但是容易损失有用信号。针对有降水特征的雷达基本反射率数... C波段多普勒天气雷达回波数据由雷达回波信号和噪声构成,噪声严重影响雷达基本反射率的准确性。利用EMD方法对雷达回波信号进行分解后,将含有噪声的高频IMF分量去除,可实现去噪,但是容易损失有用信号。针对有降水特征的雷达基本反射率数据,提出基于EMD和小波包变换的多普勒天气雷达回波去噪方法,并与EMD方法去噪结果进行比较。研究结果表明,该方法能更加有效地去除雷达回波信号中的噪声,并降低了信号特征损失。 展开更多
关键词 emd 小波包 基本反射率 去噪 信噪比
下载PDF
基于EMD-PSO-ARIMA模型的农产品价格预测
3
作者 尚俊平 李文浩 +1 位作者 席磊 刘合兵 《湖北农业科学》 2024年第8期121-125,163,共6页
针对农产品价格数据的非线性特点,提出基于EMD-PSO-ARIMA模型的农产品价格预测模型。首先利用EMD算法消除价格数据的不平稳性,其次应用PSO算法优化ARIMA模型的滞后参数,并对原始数据分解后的序列进行预测,最后对多个预测值进行累加得到... 针对农产品价格数据的非线性特点,提出基于EMD-PSO-ARIMA模型的农产品价格预测模型。首先利用EMD算法消除价格数据的不平稳性,其次应用PSO算法优化ARIMA模型的滞后参数,并对原始数据分解后的序列进行预测,最后对多个预测值进行累加得到最终结果。以河南省某农贸市场2004年1月至2021年12月鳞茎类作物(以大蒜为例)、根茎类作物(以马铃薯为例)及叶菜类作物(以白菜为例)的价格数据为研究对象进行实证研究。对大蒜、马铃薯、白菜价格进行预测,EMD-PSO-ARIMA模型的RMSE分别为0.0295、0.0168、0.0669,MAE分别为0.0274、0.0189、0.0598,MAPE分别为0.32%、0.64%、2.54%;与ARIAM、PSO-ARIMA、EMD-ARIMA模型相比,EMD-PSO-ARIMA模型的3个评价指标均有不同程度的降低,模型预测精度最高。EMD-PSO-ARIMA模型能够有效对3种农产品的价格做出精准预测,在一定程度上提高了模型预测性能,能够为农业生产者、经营者、政府提供决策支持,维护农业市场的稳定。 展开更多
关键词 emd-PSO-ARIMA模型 农产品价格 预测
下载PDF
联合TVF-EMD和SSA降噪的轴承故障特征提取
4
作者 孙骥 《制造技术与机床》 北大核心 2024年第10期21-28,共8页
针对滚动轴承早期故障信号微弱、故障特征难以提取的问题,文章提出了一种基于时变滤波经验模态分解(time-varying filtering based empirical mode decomposition,TVF-EMD)模态分量自适应融合与奇异谱分析(singular spectrum analysis,S... 针对滚动轴承早期故障信号微弱、故障特征难以提取的问题,文章提出了一种基于时变滤波经验模态分解(time-varying filtering based empirical mode decomposition,TVF-EMD)模态分量自适应融合与奇异谱分析(singular spectrum analysis,SSA)降噪的滚动轴承早期故障特征提取方法。首先,为了降低故障信号的非线性和非平稳性,通过TVF-EMD将轴承信号分解为一系列内蕴模态函数(IMF)。其次,为了克服TVF-EMD分解后IMF分量过多的不足,利用IMF的峭度、复杂度和分形维数构造了复合敏感模态判定因子(composite sensitive mode determination factor,CSMDF),通过CSMDF对IMF分量进行降序排列,并依据复合敏感模态判定因子递增原则对IMF分量依次进行融合,直至找到最优融合分量。最后,通过SSA对最优融合分量降噪,对降噪后分量进行Hilbert包络谱分析,实现轴承故障的特征提取。通过仿真故障信号以及两个实测故障信号对所提方法的性能进行了试验分析,试验结果表明,该方法具有良好的敏感特征筛选融合能力和降噪能力,能更准确地提取出轴承早期故障特征,实现噪声环境下轴承故障类型的准确识别。 展开更多
关键词 滚动轴承 TVF-emd 分形维数 故障诊断 奇异谱分析
下载PDF
基于EMD-ABOD的大坝异常监测数据识别方法研究
5
作者 杨兴富 刘得潭 +5 位作者 杨进 廖茂 杨川 顾昊 邵晨飞 吴斌庆 《水电能源科学》 北大核心 2024年第6期162-165,共4页
大坝监测数据普遍存在异常值,对异常数据进行识别和剔除,可保持模型的稳定性和可靠性,并提高模型的预测或分类性能;同时,可及时发现异常情况,以保证系统的安全运行。因此,将基于角度的异常值检测算法(ABOD)引入大坝监测异常数据识别,首... 大坝监测数据普遍存在异常值,对异常数据进行识别和剔除,可保持模型的稳定性和可靠性,并提高模型的预测或分类性能;同时,可及时发现异常情况,以保证系统的安全运行。因此,将基于角度的异常值检测算法(ABOD)引入大坝监测异常数据识别,首先通过经验模态分解(EMD)提取监测数据的高频本征函数,然后对由高频本征函数构成的新数据进行异常数据识别。对长河坝沉降监测数据的验证结果表明,与其他方法相比,EMD-ABOD可有效提升异常数据识别的准确性。 展开更多
关键词 大坝监测数据 异常数据 emd ABOD
下载PDF
基于EMD-SSSC分解的振动信号去势 被引量:2
6
作者 杨穹 秦仙蓉 +2 位作者 刘兆航 孙远韬 张氢 《噪声与振动控制》 CSCD 北大核心 2024年第1期187-191,共5页
提出一种基于经验模态分解和软筛分准则的振动信号去势方法EMD-SSSC(Empirical Mode Decomposition-Soft Sifting Stopping Criterion,EMD-SSSC),根据软筛分准则自适应控制筛分过程,改善本征模态函数的混叠问题,提高经验模态分解的精度... 提出一种基于经验模态分解和软筛分准则的振动信号去势方法EMD-SSSC(Empirical Mode Decomposition-Soft Sifting Stopping Criterion,EMD-SSSC),根据软筛分准则自适应控制筛分过程,改善本征模态函数的混叠问题,提高经验模态分解的精度与效率,从而有效去除振动信号的趋势项。通过解析函数和两自由度弹簧-质量-阻尼系统验证该方法的有效性和精度,并进一步将其应用于实际岸桥结构健康监测中加速度响应的去势。结果表明:采用EMD-SSSC方法可以准确剔除振动信号中的趋势项,去势精度远高于最小二乘法;所提出方法既可有效用于数值积分中因积分常数的存在而出现的趋势项,也可合理去除工程实际监测信号中的趋势项。 展开更多
关键词 振动与波 经验模态分解 软筛分停止准则 信号去势 信号分析 岸桥监测
下载PDF
基于EMD的地震数据速度谱优化方法
7
作者 刘玉萍 张衡 +1 位作者 张宝金 顾元 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期465-472,共8页
地震波在地层中的传播速度可间接反映地下岩性及地质构造特征,速度的提取与分析影响地震数据处理和解释全过程。目前,速度谱分辨率低,导致拾取的速度不准确,构建的速度模型精度经常不能满足复杂地质构造的地震成像要求。为此,提出基于... 地震波在地层中的传播速度可间接反映地下岩性及地质构造特征,速度的提取与分析影响地震数据处理和解释全过程。目前,速度谱分辨率低,导致拾取的速度不准确,构建的速度模型精度经常不能满足复杂地质构造的地震成像要求。为此,提出基于经验模态分解(EMD)的地震数据速度谱优化方法。该方法是一种频移处理技术,能有效提高地震数据低频端能量的信噪比。首先,基于Hilbert变换获得地震数据的瞬时振幅;其次,对瞬时振幅进行EMD;然后,筛选分解后的本征模量(IMF),选择具有有益表达速度谱信息的本征模态模量;最后,构建新的速度谱数据。经过优化后的地震数据频谱分辨率更高,有效频带向低频端移动。实验测试和实际资料处理结果表明,所提方法能有效扩大速度谱拾取的寻优区间,提高速度分析准确性,提升地震资料成像品质。该方法在成果数据处理和速度谱优化方面具有广泛的应用价值。 展开更多
关键词 HILBERT变换 经验模态分解(emd) 速度谱 频移 地震数据
下载PDF
强噪声条件下基于EMD-AE优选特征的离心泵多故障诊断方法
8
作者 向明胜 冯坤 +1 位作者 贾韶辉 赵衍 《振动与冲击》 EI CSCD 北大核心 2024年第23期66-74,共9页
工业离心泵故障诊断中常常受到噪声的干扰,针对这一问题,提出一种强噪声条件下基于经验模态分解(empirical mode decomposition,EMD)和自编码器的优选特征方法。首先利用补偿距离评估技术确定出有效的时频特征,然后通过EMD处理,得到包... 工业离心泵故障诊断中常常受到噪声的干扰,针对这一问题,提出一种强噪声条件下基于经验模态分解(empirical mode decomposition,EMD)和自编码器的优选特征方法。首先利用补偿距离评估技术确定出有效的时频特征,然后通过EMD处理,得到包含不同尺度和频率特性的模态分量。通过能量比变异系数确定出有效的分析分量,通过提取出所选分量的有效特征,拼接构造高维的深度特征。最后通过自编码器对深度特征做降维处理,进一步优选特征,得到最终的故障敏感特征,完成特征提取。选用支持向量机作为故障诊断模型,通过工业离心泵多故障数据进行对比试验。结果表明所提方法在信噪比为-5 dB、-7 dB和-10 dB强噪声干扰条件下,准确率较传统时频特征分别提高了6.13%、7.46%、12.00%。该方法有较强的抗噪声的能力,在噪声干扰下能有效提取表征设备状态的敏感特征。 展开更多
关键词 强噪声 离心泵 经验模态分解(emd) 优选特征 敏感特征
下载PDF
基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测
9
作者 朱欢欢 迟玉伦 +2 位作者 张梦梦 熊力 应晓昂 《金刚石与磨料磨具工程》 CAS 北大核心 2024年第1期73-84,共12页
针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感... 针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测。首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除“虚假分量”后计算表征轧辊磨削颤振的时域特征。然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征。最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测。结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为0.7765 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性。 展开更多
关键词 轧辊磨削颤振 emd分解 固有模态函数 小波包能量熵 最小二乘支持向量机
下载PDF
基于改进EMD方法与11/2谱的DEMON谱提取方法
10
作者 高博超 张群飞 +1 位作者 李岳珩 崔晓东 《声学技术》 CSCD 北大核心 2024年第2期260-267,共8页
噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mod... 噪声的包络调制检测(Detection of Envelope Modulation on Noise,DEMON)谱分析技术已被广泛应用于特征提取领域,但经典DEMON谱提取中高频信号频段的选取会影响DEMON谱的提取效果。针对这一问题,文中首先运用经验模态分解(Empirical Mode Decomposition,EMD)方法获得一系列固有模态函数(Intrinsic Mode Function,IMF),依据各阶模态函数与原信号的相关程度,筛选出更具代表性的几阶固有模态函数进行解调,再对解调的结果运用11/2维谱分析方法进行谱分析以抑制高斯噪声,通过这种方法获得的DEMON谱信噪比优于传统方法。实测湖试数据分析结果表明,该改进方法可以有效地进行特征提取,结果优于经典DEMON谱分析方法;该改进方法具有一定的实用性,有利于进行后续目标分类识别。 展开更多
关键词 特征提取 经验模态分解(emd) 固有模态函数 11/2维谱分析
下载PDF
EMD算法的改进及在信号去噪中的应用 被引量:2
11
作者 刘佳昕 周风波 《电子制作》 2024年第4期73-75,27,共4页
噪声的干扰在生活中无处不在,本文针对传统EMD算法在信号的非线性和非平稳特性条件下,分解而得的本征模态函数(MF)随时间尺度变化的振荡而造成的模态混叠和噪声干扰等问题进行改进。在此基础上,引入人为添加的高斯白噪声,并根据其均值为... 噪声的干扰在生活中无处不在,本文针对传统EMD算法在信号的非线性和非平稳特性条件下,分解而得的本征模态函数(MF)随时间尺度变化的振荡而造成的模态混叠和噪声干扰等问题进行改进。在此基础上,引入人为添加的高斯白噪声,并根据其均值为0的特点,深入探索基于改进后的EMD算法在信号降噪中的应用。仿真实验对比分析表明,改进后的EMD算法能清晰地判断有用信号和无用信号,有效降低噪声对信号的干扰。 展开更多
关键词 emd 模态混叠 信号去噪 均值法算法
下载PDF
基于EMD-DRSN和ILSO-SVM的水电机组故障诊断 被引量:1
12
作者 田波 张广生 +1 位作者 马泽宁 陈启卷 《中国农村水利水电》 北大核心 2024年第8期235-240,共6页
水电机组的振动信号中蕴藏着丰富的机组状态信息,如果能充分地提取并有效地利用其所含的故障特征,将对识别机组状态、诊断机组故障带来极大的便利。为充分地提取振动信号所蕴含的故障特征,将深度残差收缩网络(DRSN)与经验模态分解(EMD)... 水电机组的振动信号中蕴藏着丰富的机组状态信息,如果能充分地提取并有效地利用其所含的故障特征,将对识别机组状态、诊断机组故障带来极大的便利。为充分地提取振动信号所蕴含的故障特征,将深度残差收缩网络(DRSN)与经验模态分解(EMD)相结合,前者挖掘数据隐藏信息,后者提取时频特征,进而形成融合特征。随后,为有效利用这些故障特征,采用改进光谱优化算法(ILSO)对支持向量机(SVM)的核函数参数G和惩罚系数C进行寻优,以提高SVM的分类精确度。经分析表明该方法能在一定程度上加深对水电机组故障特征的挖掘,提高故障诊断的效率及准确率。 展开更多
关键词 水电机组 故障诊断 深度残差收缩网络 光谱优化算法 经验模态分解
下载PDF
基于EMD及闭环测试的飞机直接升力控制系统设计
13
作者 陈宣文 孟强 黄晖 《计算机测量与控制》 2024年第9期157-162,169,共7页
飞机直接升力水平不均会造成飞机飞行偏航问题,为实现对飞机飞行能力的有效控制,设计基于EMD及闭环测试的飞机直接升力控制系统;在FSEU架构中,设置ARINC429总线闭环机制,联合伺服控制模块与实时机载终端,实现飞机直接升力控制系统应用... 飞机直接升力水平不均会造成飞机飞行偏航问题,为实现对飞机飞行能力的有效控制,设计基于EMD及闭环测试的飞机直接升力控制系统;在FSEU架构中,设置ARINC429总线闭环机制,联合伺服控制模块与实时机载终端,实现飞机直接升力控制系统应用模式的搭建;根据隐藏EMD信息定义条件,求解质心动力学方程,再按照气动特性原则,计算航向偏离度的具体数值,完成基于EMD的飞机升力控制;以内存网交联环境为基础,配置模型机组织,实现对闭环测试功能的完善;实验结果表明,应用所设计系统可以改善直接升力水平不均的问题,将飞机飞行偏航角控制在0°~20°的数值范围之内,能够实现对飞机飞行能力的有效控制。 展开更多
关键词 emd分解方法 闭环测试 飞机直接升力 动力学方程 气动特性
下载PDF
基于EMD-MGWO-LSTM的大坝沉降预测模型
14
作者 卢文欣 张雷 +2 位作者 刘波 任杰 托乎提·尼亚孜 《科学技术与工程》 北大核心 2024年第35期15224-15232,共9页
大坝变形预测的准确性对大坝结构稳定和整体安全至关重要。近年来,为提升预测精度,优化算法广泛应用于大坝预测模型。然而,传统优化算法易陷入局部最优解,制约模型性能。为此,引入一种随机搜索机制至灰狼算法(grey wolf optimizer,GWO)... 大坝变形预测的准确性对大坝结构稳定和整体安全至关重要。近年来,为提升预测精度,优化算法广泛应用于大坝预测模型。然而,传统优化算法易陷入局部最优解,制约模型性能。为此,引入一种随机搜索机制至灰狼算法(grey wolf optimizer,GWO),通过Metropolis接受准则进一步改进GWO,优化算法性能。然后,创新性地将经验模态分解(empirical mode decomposition,EMD)、改进灰狼算法(modify GWO,MGWO)以及长短期记忆网络(long short-term memory network,LSTM)相融合构建一个先进的大坝沉降预测模型。以新疆五一水库实测数据作验证,采用EMD对实测数据进行处理,深入分析各分量不同的变化特征;随后,利用MGWO对LSTM的超参数精确调优,实现大坝沉降的精准预测。最后将EMD分解前后模型进行了对比分析。结果表明,提出的EMD-MGWO-LSTM大坝沉降预测模型在4个误差性能指标上均表现出显著优势,具有更高的拟合精度和卓越的预测性能。研究成果增强了其适应性,在复杂多变的大坝动态运行环境中仍然能够保持快速的响应和准确的预测,为大坝安全监测与预警提供技术支撑,有力地推动了水利现代化防洪减灾技术的发展与升级。 展开更多
关键词 大坝沉降预测 emd LSTM MGWO
下载PDF
基于改进EMD-Kurtogram法的滚动轴承早期故障诊断研究 被引量:1
15
作者 赵超阳 陈亮 +2 位作者 韦隆 韩思源 李培军 《现代电子技术》 北大核心 2024年第4期159-163,共5页
实现滚动轴承早期故障准确诊断的关键是得到故障部位有效振动信息,但实际工程中所采集到的轴承振动信号常含有噪声、干扰成分,给有效信息的选择带来了困难。带通滤波是解决该问题的有效方法之一,但不合理的滤波器参数会降低诊断结果的... 实现滚动轴承早期故障准确诊断的关键是得到故障部位有效振动信息,但实际工程中所采集到的轴承振动信号常含有噪声、干扰成分,给有效信息的选择带来了困难。带通滤波是解决该问题的有效方法之一,但不合理的滤波器参数会降低诊断结果的准确性。为此,提出一种基于改进EMD-Kurtogram法的滚动轴承早期故障诊断方法。该方法首先对EMD方法处理后的采样信号进行重构,再根据快速谱峭度图得到带通滤波器所需要的最优参数,最后经过带通滤波及时频域分析得到故障频率。通过实验平台验证及相关算法的对比得出,所提方法得到的故障倍频信息更加充分、清晰,所含噪声干扰更少,证明了该方法的有效性和先进性。 展开更多
关键词 滚动轴承 故障诊断 改进emd-Kurtogram法 带通滤波 emd信号处理 信号重构 谱峭度
下载PDF
基于EMD-PSO-HMM刀具磨损监控系统 被引量:1
16
作者 张子盛 孙爱民 +1 位作者 赖智宇 方旭阳 《制造技术与机床》 北大核心 2024年第5期139-144,共6页
为解决在机械加工过程中刀具的磨损及崩刃对加工质量和效率的影响,通过机器人学习技术,设计一套基于EMD-PSO-HMM刀具磨损监控系统。首先提取不同刀具磨损状态下主轴的电流信号,由于传统小波分析及傅里叶分析在信号分析过程存在一定局限... 为解决在机械加工过程中刀具的磨损及崩刃对加工质量和效率的影响,通过机器人学习技术,设计一套基于EMD-PSO-HMM刀具磨损监控系统。首先提取不同刀具磨损状态下主轴的电流信号,由于传统小波分析及傅里叶分析在信号分析过程存在一定局限性,文章采用EMD算法对加工过程中主轴电流信号进行不同尺度信号分解并提取特征参数,将提取的特征值输入HMM模型进行训练迭代。为解决HMM模型在模型训练的过程中存在局部最小值的问题,文章引入粒子群算法对HMM模型的输入参数进行全局搜索以达到最优值。基于以上形成的EMD-PSO-HMM刀具磨损监控系统在实际刀具磨损状态评估过程中具有较高的准确性。 展开更多
关键词 emd分解 粒子群算法 马尔可夫模型 刀具磨损状态
下载PDF
基于EMD-DESN的无人机集群航迹目的地预测 被引量:1
17
作者 薛锡瑞 黄树彩 +1 位作者 韦道知 吴建峰 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期290-299,共10页
无人机(unmanned aerial vehicle,UAV)集群作战样式多样、运动模式复杂,导致集群航迹目的地难以预测。为解决上述问题,本文提出了一种基于经验模态分解(empirical mode decomposition,EMD)和深度回声状态网络(deep echo state network,D... 无人机(unmanned aerial vehicle,UAV)集群作战样式多样、运动模式复杂,导致集群航迹目的地难以预测。为解决上述问题,本文提出了一种基于经验模态分解(empirical mode decomposition,EMD)和深度回声状态网络(deep echo state network,DESN)的UAV集群航迹目的地预测算法。为使集群运动模型更真实地模拟UAV集群作战过程,本文引入航向误差时变方差,改进了Olfati-Saber集群运动模型的虚拟领导项。为处理因群内的协同作用和集群航向误差导致的运动非平稳性,引入了EMD,对UAV航迹序列进行重构。考虑到获知航迹的时序性,设计了滑窗结构,采用DESN对重构航迹的不同时段进行目的地预测。仿真实验结果表明,本文提出的EMD-DESN算法较基本DESN算法能以更高的准确度预测UAV集群航迹目的地,并能更早地实现稳定的正确预测。 展开更多
关键词 无人机集群 目的地预测 深度回声状态网络 经验模态分解 改进Olfati-Saber模型
下载PDF
基于RKF-EMD的禽类无线动态自适应称重系统
18
作者 岳鹏飞 秦浩华 王健安 《电子测量技术》 北大核心 2024年第2期25-31,共7页
针对禽类养殖过程中人工称重费时费力、造成动物应激以及电子仪器易被破坏等问题,设计了一套适用于禽类的无线动态自适应称重系统。系统将经验模态分解和鲁棒卡尔曼滤波结合并做出适应性改进;针对秤台因粪便和饲料堆积造成的称重零点偏... 针对禽类养殖过程中人工称重费时费力、造成动物应激以及电子仪器易被破坏等问题,设计了一套适用于禽类的无线动态自适应称重系统。系统将经验模态分解和鲁棒卡尔曼滤波结合并做出适应性改进;针对秤台因粪便和饲料堆积造成的称重零点偏移问题,创新性提出了一种基于队列的自动去皮算法。通过在肉鸡养殖场实际应用和监测验证,结果表明,本文设计的适用于禽类的无线动态自适应称重系统能够快速准确地获得动物体重,且具有良好的自适应性、稳定性和鲁棒性。 展开更多
关键词 动态称重 鲁棒卡尔曼滤波 emd算法 自动去皮 无线传输
下载PDF
基于EMD-AVOA-BP的逆变器故障诊断方法
19
作者 翟宏宇 祁文哲 +1 位作者 高锋阳 张元 《铁路计算机应用》 2024年第5期1-8,共8页
以CRH3C型动车组逆变器中的绝缘栅双极型晶体管(IGBT,Insulated Gate Bipolar Transistor)双管开路故障为研究对象,提出了一种基于非洲秃鹫算法(AVOA,African Vultures Optimization Algorithm)和优化的反向传播(BP,Back Propagation)... 以CRH3C型动车组逆变器中的绝缘栅双极型晶体管(IGBT,Insulated Gate Bipolar Transistor)双管开路故障为研究对象,提出了一种基于非洲秃鹫算法(AVOA,African Vultures Optimization Algorithm)和优化的反向传播(BP,Back Propagation)神经网络的逆变器故障诊断方法。在Simulink中搭建列车逆变器的控制模型,取得故障电流;采用经验模态分解(EMD, Empirical Mode Decomposition)对电流信号进行去噪和故障特征提取,再利用AVOA对BP神经网络进行优化,实现了对列车逆变器IGBT双管开路故障的诊断。与传统方法进行对比可知,该方法具有更高的精准度,在测试集中其精准度达到100%。 展开更多
关键词 绝缘栅双极晶体管(IGBT) 经验模态分解(emd) 非洲秃鹫算法(AVOA) 反向传播(BP)神经网络 空间矢量脉宽调制(SVPWN)
下载PDF
基于EMD与DCNN混合智能煤岩识别方法研究 被引量:1
20
作者 李雄 沈良 +5 位作者 田亚锋 尹家宽 王立阳 杨东晨 慕礼洋 朱益军 《煤矿机械》 2024年第1期58-60,共3页
针对现有煤岩识别模型和方法准确率低、稳定性差、难以在工程实践中获得应用的问题,提出了基于经验模式分解(EMD)与深度卷积神经网络(DCNN)的混合智能识别方法。首先,应用EMD对采煤过程中的振动信号进行分解,得到一系列的本征模式分量(I... 针对现有煤岩识别模型和方法准确率低、稳定性差、难以在工程实践中获得应用的问题,提出了基于经验模式分解(EMD)与深度卷积神经网络(DCNN)的混合智能识别方法。首先,应用EMD对采煤过程中的振动信号进行分解,得到一系列的本征模式分量(IMF)。然后利用DCNN进行IMF信息的融合,并自动提取特征信息。最后使用Softmax实现煤岩分界的智能识别。工程应用试验数据表明,该方法能够有效、准确地实现煤岩分界的识别,并具有良好的稳定性。 展开更多
关键词 煤岩识别 emd DCNN 煤炭开采
下载PDF
上一页 1 2 183 下一页 到第
使用帮助 返回顶部