As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimizat...As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems.展开更多
The electromagnetism-like(EM)algorithm is a meta-heuristic optimization algorithm,which uses a novel searching mechanism called attraction-repulsion between charged particles.It is worth pointing out that there are tw...The electromagnetism-like(EM)algorithm is a meta-heuristic optimization algorithm,which uses a novel searching mechanism called attraction-repulsion between charged particles.It is worth pointing out that there are two potential problems in the calculation of particle charge by the original EM algorithm.One of the problems is that the information utilization rate of the population is not high,and the other problem is the decline of population diversity when the population size is much greater than the dimension of the problem.In contrast,it is more fully to exploit the useful search information based on the proposed new quadratic formula for charge calculation in this paper.Furthermore,the population size was introduced as a new multiplier term to improve the population diversity.In the end,numerical experiments were used to verify the performance of the proposed method,including a comparison with the original EM algorithm and other well-known methods such as artificial bee colony(ABC),and particle swarm optimization(PSO).The results showed the effectiveness of the proposed algorithm.展开更多
International thermonuclear experimental reactor (ITER) edge localized mode (ELM) coils are used to mitigate or suppress ELMs. The location of the coils in the vacuum vessel and behind the blankets exposes them to...International thermonuclear experimental reactor (ITER) edge localized mode (ELM) coils are used to mitigate or suppress ELMs. The location of the coils in the vacuum vessel and behind the blankets exposes them to high radiation levels and high temperatures. The feeders provide the power and cooling water for ELM coils. They are located in the chinmey ports and experience lower radiation and temperature levels. These coils and feeders work in a high magnetic field environment and are subjected to alternating electromagnetic force due to the interaction between high magnetic field and alternating current (AC) current in the coils. They are also subjected to thermal stresses due to thermal expansion. Using the ITER upper ELM coil and feeder as an example, mechanical analyses are performed to verify and optimize the updated design to enhance their structural performance. The results show that the conductor, jacket and bracket can meet the static, fatigue and crack threshold criteria. The optimization indicates that adding chamfers to the bracket can reduce the high stress of the bracket, and removing two rails can reduce the peak reaction force on the two rails arising from thermal expansion.展开更多
Developing an automatic and credible diagnostic system to analyze the type,stage,and level of the liver cancer from Hematoxylin and Eosin(H&E)images is a very challenging and time-consuming endeavor,even for exper...Developing an automatic and credible diagnostic system to analyze the type,stage,and level of the liver cancer from Hematoxylin and Eosin(H&E)images is a very challenging and time-consuming endeavor,even for experienced pathologists,due to the non-uniform illumination and artifacts.Albeit several Machine Learning(ML)and Deep Learning(DL)approaches are employed to increase the performance of automatic liver cancer diagnostic systems,the classi-fication accuracy of these systems still needs significant improvement to satisfy the real-time requirement of the diagnostic situations.In this work,we present a new Ensemble Classifier(hereafter called ECNet)to classify the H&E stained liver histopathology images effectively.The proposed model employs a Dropout Extreme Learning Machine(DrpXLM)and the Enhanced Convolutional Block Attention Modules(ECBAM)based residual network.ECNet applies Voting Mechanism(VM)to integrate the decisions of individual classifiers using the average of probabilities rule.Initially,the nuclei regions in the H&E stain are seg-mented through Super-resolution Convolutional Networks(SrCN),and then these regions are fed into the ensemble DL network for classification.The effectiveness of the proposed model is carefully studied on real-world datasets.The results of our meticulous experiments on the Kasturba Medical College(KMC)liver dataset reveal that the proposed ECNet significantly outperforms other existing classifica-tion networks with better accuracy,sensitivity,specificity,precision,and Jaccard Similarity Score(JSS)of 96.5%,99.4%,89.7%,95.7%,and 95.2%,respectively.We obtain similar results from ECNet when applied to The Cancer Genome Atlas Liver Hepatocellular Carcinoma(TCGA-LIHC)dataset regarding accuracy(96.3%),sensitivity(97.5%),specificity(93.2%),precision(97.5%),and JSS(95.1%).More importantly,the proposed ECNet system consumes only 12.22 s for training and 1.24 s for testing.Also,we carry out the Wilcoxon statistical test to determine whether the ECNet provides a considerable improvement with respect to evaluation metrics or not.From extensive empirical analysis,we can conclude that our ECNet is the better liver cancer diagnostic model related to state-of-the-art classifiers.展开更多
基金supported by the National Natural Science Foundation of China(60873099)the Fundamental Research Funds for the Central Universities(2011QNA29)
文摘As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems.
基金National Natural Science Foundation of China(Nos.61602398 and U19A2083)Science and Technology Development of Hunan Province,China(No.2019GK4007)。
文摘The electromagnetism-like(EM)algorithm is a meta-heuristic optimization algorithm,which uses a novel searching mechanism called attraction-repulsion between charged particles.It is worth pointing out that there are two potential problems in the calculation of particle charge by the original EM algorithm.One of the problems is that the information utilization rate of the population is not high,and the other problem is the decline of population diversity when the population size is much greater than the dimension of the problem.In contrast,it is more fully to exploit the useful search information based on the proposed new quadratic formula for charge calculation in this paper.Furthermore,the population size was introduced as a new multiplier term to improve the population diversity.In the end,numerical experiments were used to verify the performance of the proposed method,including a comparison with the original EM algorithm and other well-known methods such as artificial bee colony(ABC),and particle swarm optimization(PSO).The results showed the effectiveness of the proposed algorithm.
文摘International thermonuclear experimental reactor (ITER) edge localized mode (ELM) coils are used to mitigate or suppress ELMs. The location of the coils in the vacuum vessel and behind the blankets exposes them to high radiation levels and high temperatures. The feeders provide the power and cooling water for ELM coils. They are located in the chinmey ports and experience lower radiation and temperature levels. These coils and feeders work in a high magnetic field environment and are subjected to alternating electromagnetic force due to the interaction between high magnetic field and alternating current (AC) current in the coils. They are also subjected to thermal stresses due to thermal expansion. Using the ITER upper ELM coil and feeder as an example, mechanical analyses are performed to verify and optimize the updated design to enhance their structural performance. The results show that the conductor, jacket and bracket can meet the static, fatigue and crack threshold criteria. The optimization indicates that adding chamfers to the bracket can reduce the high stress of the bracket, and removing two rails can reduce the peak reaction force on the two rails arising from thermal expansion.
文摘Developing an automatic and credible diagnostic system to analyze the type,stage,and level of the liver cancer from Hematoxylin and Eosin(H&E)images is a very challenging and time-consuming endeavor,even for experienced pathologists,due to the non-uniform illumination and artifacts.Albeit several Machine Learning(ML)and Deep Learning(DL)approaches are employed to increase the performance of automatic liver cancer diagnostic systems,the classi-fication accuracy of these systems still needs significant improvement to satisfy the real-time requirement of the diagnostic situations.In this work,we present a new Ensemble Classifier(hereafter called ECNet)to classify the H&E stained liver histopathology images effectively.The proposed model employs a Dropout Extreme Learning Machine(DrpXLM)and the Enhanced Convolutional Block Attention Modules(ECBAM)based residual network.ECNet applies Voting Mechanism(VM)to integrate the decisions of individual classifiers using the average of probabilities rule.Initially,the nuclei regions in the H&E stain are seg-mented through Super-resolution Convolutional Networks(SrCN),and then these regions are fed into the ensemble DL network for classification.The effectiveness of the proposed model is carefully studied on real-world datasets.The results of our meticulous experiments on the Kasturba Medical College(KMC)liver dataset reveal that the proposed ECNet significantly outperforms other existing classifica-tion networks with better accuracy,sensitivity,specificity,precision,and Jaccard Similarity Score(JSS)of 96.5%,99.4%,89.7%,95.7%,and 95.2%,respectively.We obtain similar results from ECNet when applied to The Cancer Genome Atlas Liver Hepatocellular Carcinoma(TCGA-LIHC)dataset regarding accuracy(96.3%),sensitivity(97.5%),specificity(93.2%),precision(97.5%),and JSS(95.1%).More importantly,the proposed ECNet system consumes only 12.22 s for training and 1.24 s for testing.Also,we carry out the Wilcoxon statistical test to determine whether the ECNet provides a considerable improvement with respect to evaluation metrics or not.From extensive empirical analysis,we can conclude that our ECNet is the better liver cancer diagnostic model related to state-of-the-art classifiers.