期刊文献+
共找到370篇文章
< 1 2 19 >
每页显示 20 50 100
Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline 被引量:2
1
作者 Feng Guo Chunli Shi +3 位作者 Wei Sun Yanan Liu Xue Lin Weilong Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期1-11,共11页
In this study,biochar(BC)derived from pomelo was prepared via a high-temperature calcination method to modify the graphitic carbon nitride(g-C_(3)N_(4))to synthesize the BC/g-C_(3)N_(4)composite for the degradation of... In this study,biochar(BC)derived from pomelo was prepared via a high-temperature calcination method to modify the graphitic carbon nitride(g-C_(3)N_(4))to synthesize the BC/g-C_(3)N_(4)composite for the degradation of the tetracycline(TC)antibiotic under visible light irradiation.The experimental results exhibit that the optimal feeding weight ratio of biochar/urea is 0.03:1 in BC/g-C_(3)N_(4)composite could show the best photocatalytic activity with the degradation rate of tetracycline is 83%in 100 min irradiation.The improvement of photocatalytic activity is mainly attributed to the following two points:(i)the strong bonding with π-π stacking between BC and g-C_(3)N_(4)make the photogenerated electrons of light-excited g-C_(3)N_(4)transfer to BC,quickly and improve the separation efficiency of carriers;(ii)the introduction of BC reduces the distance for photogenerated electrons to migrate to the surface and increases the specific surface area for providing more active sites.This study provides a sustainable,economical and promising method for the synthesis of photocatalytic materials their application to wastewater treatment. 展开更多
关键词 POMELO BIOCHAR Graphitic carbon nitride Photocatalytic degradation electron acceptor
下载PDF
Non-fullerene small molecule electron acceptors for high-performance organic solar cells 被引量:1
2
作者 Hao Lin Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期990-1016,共27页
Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the i... Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the intrinsic shortcomings, such as weak absorption in the visible range, difficulty in modification and high cost, which limit the performance of the device and the large-scale application of this type of acceptors. In recent years, non-fullerene electron acceptor material has attracted the attention of scientists due to the advantages of adjustable energy level, wide absorption, simple synthesis, low processing cost and good solubility. Researchers can use the rich chemical means to design and synthesize organic small molecules and their oligomers with specific aggregation morphology and excellent optoelectronic prop- erties. Great advances in the field of synthesis, device engineering, and device physics of non-fullerene acceptors have been achieved in the last few years. At present, non-fullerene small molecules based photovoltaic devices achieve the highest efficiency more than 13% and the efficiency gap between fullerenetype and non-fullerene-type photovoltaic devices is gradually narrowing. In this review, we explore recent progress of non-fullerene small molecule electron acceptors that have been developed and led to highefficiency photovoltaic devices and put forward the prospect of development in the future. 展开更多
关键词 Organic solar cells Non-fullerene electron acceptors Bulk heterojunction
下载PDF
Molecular design towards two-dimensional electron acceptors for efficient non-fullerene solar cells 被引量:1
3
作者 Yan Liu Zixian Liu +5 位作者 Zhicheng Hu Yuanying Liang Zhenfeng Wang Zhongxin Chen Fei Huang Yong Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期190-198,共9页
Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular elec... Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular electron acceptors with 2-dimensional(2 D) configuration and conjugation are seldom reported.Herein, we designed and synthesized a series of novel 2 D electron acceptors for efficient NF-PSCs. With rational optimization on the conjugated moieties in both vertical and horizontal direction, these 2 D electron acceptors showed appealing properties, such as good planarity, full-spectrum absorption, high absorption extinction coefficient, and proper blend morphology with donor polymer. A high PCE of 9.76%was achieved for photovoltaic devices with PBDB-T as the donor and these 2 D electron acceptors. It was also found the charge transfer between the conjugated moieties in two directions of these 2 D molecules contributes to the utilization of absorbed photos, resulting in an exceptional EQE of 87% at 730 nm. This work presents rational design guidelines of 2 D electron acceptors, which showed great promise to achieve high-performance non-fullerene polymer solar cells. 展开更多
关键词 Two-dimensional molecules Perylene diimide electron acceptors Molecular design Non-fullerene solar cells
下载PDF
PHOTOINDUCED CHARGE TRANSFER POLYMERIZATION OF STYRENE INITIATED BY ELECTRON ACCEPTOR
4
作者 曹维孝 张鹏 冯新德 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1995年第3期259-263,共5页
Photoinduced charge transfer polymerization of styrene(St) with electron acceptor as initiator was investigated. In case of fumaronitrile (FN) or maleic anhydride (MA) as initiator the polymerization takes place regul... Photoinduced charge transfer polymerization of styrene(St) with electron acceptor as initiator was investigated. In case of fumaronitrile (FN) or maleic anhydride (MA) as initiator the polymerization takes place regularly, whereas the tetrachloro-1,4-benzenequinone (TCQ), 2,3-dichloro-5, 6-dicyano-1, 4-benzenequinone (DDQ). or tetracyano ethylene (TCNE) as initiator the polymerization proceeds reluctantly only after the photoaddition reaction. A mechanism was proposed that free radicals would be formed following the charge and proton transfer in the exciplex formed between St and electron accepters. 展开更多
关键词 STYRENE electron acceptor PHOTOINDUCED POLYMERIZATION
下载PDF
Characterization of phosphorus removal bacteria in (AO)^2 SBR system by using different electron acceptors 被引量:1
5
作者 蒋轶锋 王琳 +3 位作者 余颖 王宝贞 刘硕 沈峥 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期155-159,共5页
Characteristics of phosphorus removal bacteria were investigated by using three different types of electron acceptors, as well as the positive role of nitrite in phosphorus removal process. An (AO)2 SBR (anaerobic-aer... Characteristics of phosphorus removal bacteria were investigated by using three different types of electron acceptors, as well as the positive role of nitrite in phosphorus removal process. An (AO)2 SBR (anaerobic-aerobic-anoxic-aerobic sequencing batch reactor) was thereby employed to enrich denitrifying phosphorus removal bacteria for simultaneously removing phosphorus and nitrogen via anoxic phosphorus uptake. Ammonium oxidation was controlled at the first phase of the nitrification process. Nitrite-inhibition batch tests illustrated that nitrite was not an inhibitor to phosphorus uptake process, but served as an alternative electron acceptor to nitrate and oxygen if the concentration was under the inhibition level of 40mg NO2-N·L-1. It implied that in addition to the two well-accepted groups of phosphorus removal bacterium (one can only utilize oxygen as electron acceptor, P1, while the other can use both oxygen and nitrate as electron acceptor, P2), a new group of phosphorus removal bacterium P3, which could use oxygen, nitrate and nitrite as electron acceptor to take up phosphorus were identified in the test system. To understand (AO)2 SBR sludge better, the relative population of the different bacteria in this system, plus another A/O SBR sludge (seed sludge) were respectively estimated by the phosphorus uptake batch tests with either oxygen or nitrate or nitrite as electron acceptor. The results demonstrated that phosphorus removal capability of (AO)2 SBR sludge had a little degradation after A/O sludge was cultivated in the (AO)2 mode over a long period of time. However, denitrifying phosphorus removal bacteria (P2 and P3) was significantly enriched showed by the relative population of the three types of bacteria, which implied that energy for aeration and COD consumption could be reduced in theory. 展开更多
关键词 (AO)^2 SBR系统 脱磷细菌 电子受主 亚硝酸盐 氧气 硝酸盐
下载PDF
Fused thienobenzene-thienothiophene electron acceptors for organic solar cells
6
作者 Ye Xu Haotian Jiang +5 位作者 Tsz-Ki Lau Jingshuai Zhu Jiayu Wang Xinhui Lu Xiaowei Zhan Yuze Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期58-65,共8页
Small molecule ladder-type heteroarenes IHBT-2F is designed and synthesized with strong electrondonating and molecular packing properties, where the central unit, fused thienobenzene-thienothiphene (IHBT), is attached... Small molecule ladder-type heteroarenes IHBT-2F is designed and synthesized with strong electrondonating and molecular packing properties, where the central unit, fused thienobenzene-thienothiphene (IHBT), is attached with the strong electron-deficient 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2FIC) as the end group. The counterpart IDBT-2F with indancenodibenzothiophene (IDBT) mainchain is sythesized for comparison, in which thieno[3,2-b]thiophene (TT) core of IHBT is replaced by benzene core. Relative to benzene-core IDBT-2F, TT-core IHBT-2F shows a much higher highest occupied molecular orbital energy level (IHBT-2F:-5.46 eV;IDBT-2F:-5.72 eV) and significantly redshifted absorption, due to the π-donor capability of the sulfur atom, the larger π-conjugation and stronger intermolecular π-π stacking. The as-cast organic solar cells (OSCs) based on blends of PTB7-Th donor and IHBT-2F acceptor without additional treatments exhibit power conversion efficiencies (PCEs) as high as 8.74%, which is much higher than that of PTB7-Th:IDBT-2F (6.73%). 展开更多
关键词 ORGANIC SOLAR cell FUSED RING electron acceptor Thienobenzene Non-fullerene
下载PDF
Near-infrared non-fused electron acceptors for efficient organic photovoltaics
7
作者 Wenxiang Ma Xinyu He +3 位作者 Tianyi Chen De-Li Ma Hongzheng Chen Chang-Zhi Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期436-441,共6页
Developing narrow-bandgap organic semiconductors is important to facilitate the advancement of organic photovoltaics(OPVs). Herein, two near-infrared non-fused ring acceptors(NIR NFRAs), PTBFTT-F and PTBFTT-Cl have be... Developing narrow-bandgap organic semiconductors is important to facilitate the advancement of organic photovoltaics(OPVs). Herein, two near-infrared non-fused ring acceptors(NIR NFRAs), PTBFTT-F and PTBFTT-Cl have been developed with A-π_A-π_D-D-π_D-π_A-A non-fused structures. It is revealed that the introduction of electron deficient π-bridge(π_A) and multiple intramolecular noncovalent interactions effectively retained the structural planarity and intramolecular charge transfer of NFRAs, extending strong NIR photon absorption up to 950 nm. Further, the chlorinated acceptor, with the enlarged π-surface compared to the fluorinated counterpart, promoted not only molecular stacking in solid, but also the desirable photochemical stability in ambient, which are helpful to thereby improve the exciton and charge dynamics for the corresponding OPVs. Overall, this work provides valuable insights into the design of NIR organic semiconductors. 展开更多
关键词 Organic photovoltaic NEAR-INFRARED Non-fused electron acceptor Noncovalent interaction STABILITY
原文传递
Enhancing Photovoltaic Performance of Nonfused-Ring Electron Acceptors via Asymmetric End-Group Engineering and Noncovalently Conformational Locks
8
作者 Bo Liu Congqi Li +6 位作者 Xiaobin Gu Yinghui Han Zhixiang Wei Yunhao Cai Xin Zhang Hui Huang Yanping Huo 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第5期485-490,共6页
By employing the asymmetric end-group engineering,an asymmetric nonfused-ring electron acceptor(NFREA)was designed and synthesized.Compared with the symmetric analogs(NoCA-17 and NoCA-18),NoCA-19 possesses broader lig... By employing the asymmetric end-group engineering,an asymmetric nonfused-ring electron acceptor(NFREA)was designed and synthesized.Compared with the symmetric analogs(NoCA-17 and NoCA-18),NoCA-19 possesses broader light absorption range,more coplanarπ-conjugated backbone,and appropriate crystallinity according to the experimental and theoretical results.The organic solar cells based on J52:NoCA-19 exhibited a power conversion efficiency as high as 12.26%,which is much higher than those of J52:NoCA-17(9.50%)and J52:NoCA-18(11.77%),mainly due to more efficient exciton dissociation,better and balanced charge mobility,suppressed recombination loss,shorter charge extraction time,longer charge carrier lifetimes,and more favorable blend film morphology.These findings demonstrate the great potential of asymmetric end-group engineering in exploring low-cost and high-performance NFREAs. 展开更多
关键词 Organic solar cells Nonfused-ring electron acceptors Asymmetric end-group engineering Noncovalently conformational locks Low-cost acceptors
原文传递
A Simple Building Block with Noncovalently Conformational Locks towards Constructing Low-Cost and High-Performance Nonfused Ring Electron Acceptors 被引量:3
9
作者 Xiao-Bin Gu Jin-Hua Gao +7 位作者 Zi-Yang Han Yu-Hao Shi Ya-Nan Wei Yin-Cheng Zhang Qian Peng Zhi-Xiang Wei Xin Zhang Hui Huang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第4期556-563,I0008,共9页
Nonfused ring electron acceptors(NFREAs)have attracted much attention due to their concise synthetic routes and low cost.However,developing high-performance NFREAs with simple structure remains a great challenge.In th... Nonfused ring electron acceptors(NFREAs)have attracted much attention due to their concise synthetic routes and low cost.However,developing high-performance NFREAs with simple structure remains a great challenge.In this work,a simple building block(POBT)with noncovalently conformational locks(No CLs)was designed and synthesized.Single-crystal X-ray study indicated the presence of S…O NOCLs in POBT,thus enabling it to possess a coplanar conformation comparable to that of fused-ring CPT.Two novel NFREAs based on CPT and POBT were developed,namely TT-CPT and TT-POBT,respectively.Besides,TT-POBT possessed a smaller Stokes shift and a reduced reorganization energy compared with TT-CPT,indicating the introduction of S…O No CLs can enhance the molecular rigidity even if simplifying the molecular structure.As a result,the TT-POBT-based PSC device afforded an impressive power conversion efficiency of 11.15%,much higher than that of TT-CPT counterpart(7.03%),mainly resulting from the tighterπ-πstacking,improved and balanced charge transport,and more favorable film morphology.This work demonstrates the potential of the simple building block POBT with No CLs towards constructing low-cost and highperformance NFREAs. 展开更多
关键词 Polymer solar cells Nonfused ring electron acceptors Simple building block Noncovalent conformation locks Reorganization energy
原文传递
A Simple Nonfused Ring Electron Acceptor with a Power Conversion Efficiency over 16% 被引量:2
10
作者 Xiaodong Wang Rui Zeng +8 位作者 Hao Lu Guangliu Ran Andong Zhang Ya-Nan Chen Yahui Liu Feng Liu Wenkai Zhang Zheng Tang Zhishan Bo 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第6期665-671,共7页
By simplifying the r-bridge unit,a nonfused ring electron acceptor(NFREA)BM-2F was designed and synthesized with several high-yield steps.The specific molecular structure features of BM-2F are planar molecular backbon... By simplifying the r-bridge unit,a nonfused ring electron acceptor(NFREA)BM-2F was designed and synthesized with several high-yield steps.The specific molecular structure features of BM-2F are planar molecular backbone and out-of-plane side chain,which is favorable for charge transport and can suppress the over-aggregation.BM-2F based neat and blend films display obvious face-on molecular orientation.Specially,D18:BM-2F based blend film can form good bicontinuous interpenetrating network.More excitingly,a power conversion efficiency of 16.15%was achieved with D18:BM-2F based photovoltaic devices,which is the highest one based on NFREAs.Our researches manifest that NFREA is a promising direction for low-cost and high-performance organic solar cells. 展开更多
关键词 Organic solar cells Nonfused ring electron acceptors Nonfullerene acceptors Low-cost acceptors High-performance acceptors
原文传递
Insight into the efficiency-stability-cost balanced organic solar cell based on a polymerized nonfused-ring electron acceptor 被引量:2
11
作者 Xiaobin Gu Yanan Wei +8 位作者 Guanyu Lu Ziyang Han Di Zheng Guanghao Lu Jianqi Zhang Zhixiang Wei Yunhao Cai Xin Zhang Hui Huang 《Aggregate》 EI CAS 2023年第6期172-179,共8页
Organic solar cells(OSCs)have attracted extensive attention from both academia and industry in recent years due to their remarkable improvement in power conversion efficiency(PCE).However,the Golden Triangle(the balan... Organic solar cells(OSCs)have attracted extensive attention from both academia and industry in recent years due to their remarkable improvement in power conversion efficiency(PCE).However,the Golden Triangle(the balance of efficiency-stability-cost)required for large-scale industrialization of OSCs still remains a great challenge.Here,a new nonfused-ring electron acceptor(NFREA)BF and its polymerized counterpart PBF were designed and synthesized,and their photovoltaic performance,storage stability and material cost were systematically investigated.When blended with a widely-used polymer donor PBDB-T,the PBFbased all-polymer solar cell(all-PSC)displayed a record high PCE of 12.61%for polymerized NFREAs(PNFREAs)with an excellent stability(95.2%of initial PCE after 800 h storage),superior to the BF counterpart.Impressively,PBF-based allPSC possesses the highest industrial figure-of-merit(i-FOM)value of 0.309 based on an efficiency-stability-cost evaluation,in comparison to several representative OSC systems(such as PM6:Y6 and PBDB-T:PZ1).This work provides an insight into the balance of efficiency,stability,and cost,and also indicates that the PNFREAs are promising materials toward the commercial application of OSCs. 展开更多
关键词 all-polymer solar cells efficiency-stability-cost balance noncovalently conformational locks organic solar cell polymerized nonfused-ring electron acceptors
原文传递
Realizing compact three-dimensional charge transport networks of asymmetric electron acceptors for efficient organic solar cells 被引量:1
12
作者 Jinlong Cai Yiwei Fu +6 位作者 Chuanhang Guo Donghui Li Liang Wang Chen Chen Dan Liu Wei Li Tao Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第2期508-517,共10页
Asymmetry has been demonstrated an effective approach in recent years to tune the structural and energetic orders of nonfullerene electron acceptors(NFAs)to prepare efficient organic solar cells(OSCs).In this article,... Asymmetry has been demonstrated an effective approach in recent years to tune the structural and energetic orders of nonfullerene electron acceptors(NFAs)to prepare efficient organic solar cells(OSCs).In this article,five asymmetric NFAs,namely C9BTP-BO-Th Cl-2F,C9BTP-BO-Cl-2F,C9BTP-BO-2Cl-2F,C7BTP-BO-2Cl-2F and C5BTP-BO-2Cl-2F possessing varied asymmetric end-groups and alkyl chains are synthesized to tune the charge transport networks formed within these NFAs.We found that the enhanced planarity in the asymmetric NFA can facilitate closerπ-πstacking distance in either the A-to-A or A-toD type NFA dimers,whilst the larger dipole moment can promote the formation of three-dimensional(3D)charge transport networks among NFAs.Taking those advantages,C7BTP-BO-2Cl-2F exhibit a compact 3D honeycomb network with a high packing coefficient of 72.1%and molecular packing density of 0.48 g/cm^(3),contributing to a superior power conversion efficiency of 18.0%when employing PM6 as the donor,with an open-circuit voltage of 0.85 V,short-circuit current of26.7 m A cm^(-2)and fill factor of 79.3%.Our work provides guidelines in engineering the end group and side chains of asymmetric NFAs to achieve compact charge transport networks for high efficiency OSCs. 展开更多
关键词 organic solar cells asymmetric non-fullerene electron acceptor PLANARITY dipole moment charge transport networks
原文传递
Combination of S…N and S…Cl Noncovalently Conformational Locks for Constructing High-Planarity and Low-Cost Nonfused-Ring Electron Acceptors 被引量:1
13
作者 Ziyang Han Congqi Li +8 位作者 Xiaobin Gu Xiao Han Sixuan Wang Yanan Wei Jinhua Gao Zhixiang Wei Yunhao Cai Xin Zhang Hui Huang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第15期1797-1802,共6页
Comprehensive Summary By employing thiazole and 4-chlorothiazole as the A′units,two A-D-A′-D-A type nonfused-ring electron acceptors(NFREAs)Tz-H and Tz-Cl were designed and synthesized.Replacing thiazole in Tz-H wit... Comprehensive Summary By employing thiazole and 4-chlorothiazole as the A′units,two A-D-A′-D-A type nonfused-ring electron acceptors(NFREAs)Tz-H and Tz-Cl were designed and synthesized.Replacing thiazole in Tz-H with 4-chlorothiazole can not only remarkably shorten the synthetic route through C—H direct arylation but also enhance molecular planarity with the simultaneous incorporation of S…N and S…Cl noncovalently conformational locks(NoCLs).The photovoltaic devices based on PM6:Tz-Cl exhibited a power conversion efficiency as high as 11.10%,much higher than that of PM6:Tz-H(6.41%),mainly due to more efficient exciton dissociation,better and more balanced carrier mobility,less charge recombination,and more favorable morphology.These findings demonstrate the great potential of NoCLs in achieving low-cost and high-performance NFREAs. 展开更多
关键词 Organic solar cells Nonfused-ring electron acceptors Noncovalently conformational locks High-planarity and low-cost acceptors 4-Chlorothiazole
原文传递
Latest progress on fully non-fused electron acceptors for high-performance organic solar cells 被引量:1
14
作者 Jianhong Gao Xiaodong Zhu +4 位作者 Hanyi Bao Jibao Feng Xiang Gao Zhitian Liu Ziyi Ge 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期76-81,共6页
Benefitting from the development of non-fullerene acceptors(NFAs),remarkable advances have been achieved with the power conversion efficiency(PCE)exceeding 19%over the last few years.However,the major achievement come... Benefitting from the development of non-fullerene acceptors(NFAs),remarkable advances have been achieved with the power conversion efficiency(PCE)exceeding 19%over the last few years.However,the major achievement comes from fused ring electron acceptors(FREAs)with complex structures,leading to high cost.Hence,it is urgent to design new materials to resolve the cost issues concerning basic commercial requirements of organic solar cells.Recently,great progress has been made in fully non-fused ring electron acceptors(NFREAs)with only single-aromatic ring in the electron-donating core,which might achieve a fine balance between the efficiency and cost,thus accelerating the commercial application of organic solar cells.Therefore,this article summarizes the recent advances of fully NFREAs with efficiency over 10%,which may provide a guidance for developing the cost-effective solar cells. 展开更多
关键词 Organic solar cells Fully non-fused electron acceptors Noncovalent interaction Power conversion efficiency Over 10%
原文传递
Carbazolebis(thiadiazole)-core based non-fused ring electron acceptors for efficient organic solar cells 被引量:1
15
作者 Yongjie Cui Peipei Zhu +3 位作者 Xinxin Xia Xinhui Lu Xunfan Liao Yiwang Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期322-327,共6页
Non-fused ring electron acceptors(NFREAs)have a broad application prospect in the commercialization of organic solar cells(OSCs)due to the advantages of simple synthesis and low cost.The selection of intermediate bloc... Non-fused ring electron acceptors(NFREAs)have a broad application prospect in the commercialization of organic solar cells(OSCs)due to the advantages of simple synthesis and low cost.The selection of intermediate block cores of non-fused frameworks and the establishment of the relationship between molecular structure and device performance are crucial for the realization of high-performance OSCs.Herein,two A-D-A’-D-A type NFREAs namely CBTBO-4F and CBTBO-4Cl,constructed with a novel electron-deficient block unit N-(2-butyloctyl)-carbazole[3,4-c:5,6-c]bis[1,2,5]thiadiazole(CBT)and bridging unit 4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b’]dithiophene(DTC)coupling with different terminals(IC-2F/2Cl),were designed and synthesized.The two NFREAs feature broad and strong photoresponse from 500 nm to 900 nm due to the strong intramolecular charge transfer characteristics.Compared with CBTBO-4F,CBTBO-4Cl shows better molecular planarity,stronger crystallinity,more ordered molecular stacking,larger van der Waals surface,lower energy level and better active layer morphology,contributing to much better charge separation and transport behaviors in its based devices.As a result,the CBTBO-4Cl based device obtains a higher power conversion efficiency of 10.18%with an open-circuit voltage of 0.80 V and a short-circuit current density of 21.20 mA/cm^(2).These results not only demonstrate the great potential of CBT,a new building block of the benzothiazole family,in the construction of high-performance organic conjugated semiconductors,but also suggest that the terminal chlorination is an effective strategy to improve device performance. 展开更多
关键词 Carbazolebis(thiadiazole) Non-fused ring electron acceptors A-D-A’-D-A type Molecular planarity Organic solar cells
原文传递
Enhancing Photovoltaic Performance of Ladder-Type Heteroarene-Based Electron Acceptors by Modulating Molecular Packing
16
作者 Hongxin Tao Changquan Tang +4 位作者 Yunlong Ma Shu-Quan Zhang Ruochuan Liao Qisheng Tu Qingdong Zheng 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第17期2143-2150,共8页
Comprehensive Summary,The development of novel building blocks with sp3-hybridized-carbon-free conjugated skeletons is important to further advance and enrich nonfullerene acceptors(NFAs),but this remains a challenge ... Comprehensive Summary,The development of novel building blocks with sp3-hybridized-carbon-free conjugated skeletons is important to further advance and enrich nonfullerene acceptors(NFAs),but this remains a challenge due to the lack of strategies to effectively modulate the aggregation behavior of resulting NFAs.Herein,two novel nitrogen-bridged octacyclic ladder-type heteroarenes end-capped with thiophene rings(BTPS)or selenophene rings(BTPSe)are designed and synthesized as the donor cores for constructing NFAs(MQX-2 and MQX-4).It is found that replacing the sulfur atoms(MQX-2)at the outer positions of the heteroarene core with selenium atoms(MQX-4)can effectively modulate the molecular packing mode of the NFAs.The incorporation of selenium atoms induces stronger O···Se noncovalent interaction than O···S,thus promoting the formation of mixed H/J-type aggregates in MQX-4.Benefiting from more electron hopping channels,MQX-4 exhibits higher electron transport(more than 1-fold enhancement)and photovoltaic properties compared to MQX-2,which forms only H-type aggregates. 展开更多
关键词 Polymer solar cells electron acceptors Noncovalent interactions Molecular packing electron transport
原文传递
Design and Synthesis of N-Alkylaniline-Substituted Low Band-Gap Electron Acceptors for Photovoltaic Application
17
作者 Jiayao Li Hao Li +2 位作者 Lijiao Ma Shaoqing Zhang Jianhui Hou 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第4期424-430,共7页
A novel electron donating unit,namely N-octyl-N-phenyl-thiophene(OPT),was designed in preparing electron acceptors with non-fused ring chemical structures.By introducing different functional atoms/groups into the para... A novel electron donating unit,namely N-octyl-N-phenyl-thiophene(OPT),was designed in preparing electron acceptors with non-fused ring chemical structures.By introducing different functional atoms/groups into the para-position of phenyl in the OPT units,three non-fused ring acceptors(NFREAs),C8-2F,FC8-2F and MeC8-2F,were synthesized.The absorption spectrum of the three acceptors can be extended to about 950 nm with band-gaps of 1.28—1.32 eV due to the strong electron donating ability of OPT.The frontier molecular orbital distribution of OPT based molecules obtained by quantum chemistry calculation results reveals that their energy alignment can be finely tuned to meet different requirements.Moreover,by changing the substituents on the OPT units,their Flory-Huggins interaction parameter(χ)with the donor will be greatly influenced and different phase separation behavior can be accomplished.After blended with PBDB-TF,the FC8-2F-based cell yields short circuit current density(J_(sc))of 23.21 mA·cm^(-2),fill factor(FF)of 72.11%and the highest power conversion efficiency(PCE)of 12.42%.This work provides a new pathway for molecular design of new NFREAs,and demonstrates the application potential of OPT unit in realizing low band-gap photovoltaic materials. 展开更多
关键词 Organic photovoltaics Non-fused ring acceptors N-Alkylaniline-substituted group Low band-gap electron acceptors
原文传递
Enhancing performance of tin-based perovskite solar cells via fused-ring electron acceptor
18
作者 Chengbo Wang Yiting Jiang +7 位作者 Hanyu Xu Nanlong Zheng Guangsheng Bai Yanxin Zha Hao Qi Zuqiang Bian Xiaowei Zhan Zhiwei Liu 《eScience》 2023年第3期89-95,共7页
The performance of tin-based perovskite solar cells has been substantially hampered by voltage loss caused by energy level mismatch,charge recombination,energetic disorder,and other issues.Here,a fused-ring electron a... The performance of tin-based perovskite solar cells has been substantially hampered by voltage loss caused by energy level mismatch,charge recombination,energetic disorder,and other issues.Here,a fused-ring electron acceptor based on indacenodithiophene(IDIC)was for the first time introduced as a transition layer between a tin-based perovskite layer and a C 60 electron transport layer,leading to better matched energy levels in the device.In addition,coordination interactions between IDIC and perovskite improved the latter's crystallinity.The introduction of IDIC raised the power conversion efficiency from 8.98%to 11.5%and improved the device's stability.The decomposition mechanism of tin-based perovskite was also revealed by detecting the optical properties of perovskite microdomains through innovative integration of confocal laser scanning microscopy and photoluminescence spectroscopy. 展开更多
关键词 Perovskite solar cell TIN Fused-ring electron acceptor Decomposition mechanism
原文传递
From Perylene Dimide Polymers to Fused-Ring Electron Acceptors:A 15-Year Exploration Journey of Nonfullerene Acceptors 被引量:6
19
作者 Jiayu Wang Xiaowei Zhan 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2022年第13期1592-1607,共16页
Fullerene derivatives are classic electron acceptor materials for organic solar cells (Oscs) but possess some intrinsic drawbacks such as weak visiblelightabsorption,limitedoptoelectronic property tunability,dificult ... Fullerene derivatives are classic electron acceptor materials for organic solar cells (Oscs) but possess some intrinsic drawbacks such as weak visiblelightabsorption,limitedoptoelectronic property tunability,dificult purification and photochemical/morphological instability.Fullereneacceptors area bottleneck restricting further development of this field. Ourgroup pioneered the exploration of novel nonfulerene acceptors in China in 2006,andinitiated the research of two representative acceptor systems, rylene dimide polymer and fused-ring electron acceptor (FREA).FREA breaks the theoreticalefficiencylimit of fullerene-based OsCs (-13%) and promotes the whole field to an unprecedented prosperity with efficiency of 20%, heraldinga nonfullerene era for OsCs.In this review, we revisit 15-year nonfullerene exploration journey,summarize the design principles,molecular engineeringstrategies, physical mechanisms and device applications of these two nonfullerene acceptor systems, and propose some possible researchtopics in the nearfuture. 展开更多
关键词 Energyconversion SEMICONDUCTORS electron-deficient compounds Rylene dimides Fused-ring electron acceptors
原文传递
Performance of Ag_(2)O/Ag Electrode as Cathodic Electron Acceptor in Microbial Fuel Cell 被引量:2
20
作者 Hong-Yan Dai Hui-Min Yang +2 位作者 Xuan Jian Xian Liu Zhen-Hai Liang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第12期1243-1248,共6页
An Ag2O/Ag electrode was prepared through the electrochemical oxidation of sterling silver. This electrode was used as a cathodic electron acceptor in a microbial fuel cell (MFC). The Ag2O/Ag electrode was character... An Ag2O/Ag electrode was prepared through the electrochemical oxidation of sterling silver. This electrode was used as a cathodic electron acceptor in a microbial fuel cell (MFC). The Ag2O/Ag electrode was characterized by scanning electron microscopy, X-ray powder diffraction and linear sweep voltammetry. The maximum voltage output of the MFC with the AgaO/Ag cathode was maintained at between 0.47 and 0.5 V in 100 cycles, indicating the good regenerative capacity of the Ag2O/Ag electrode. The overpotential loss for silver oxide was 0.021-0.006 V, and the maximum power output, open circuit potential and short circuit current of the MFC were 1.796 W m^-3, 0.559 V and 9.3375 A m^-3, respectively. The energy required for electrochemical reoxidation ranged from 40% to 55% of the energy produced by the MFC. Results indicated that the AgeO/Ag electrode could be used as a cathodic electron acceptor in MFCs with excellent stability. 展开更多
关键词 Ag2O/Ag electrode Cathodic electron acceptor Microbial fuel cell Regenerative capacity Overpotential loss STABILITY
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部