The microstructures of copper liners of shaped charges prepared byelectroforming technique were investigated by transmission electron microscopy (TEM). Meanwhile, theorientations distributing of the grains in the elec...The microstructures of copper liners of shaped charges prepared byelectroforming technique were investigated by transmission electron microscopy (TEM). Meanwhile, theorientations distributing of the grains in the electroformed copper liners of shaped charges wasexamined by the electron backscattering Kikuchi pattern (EBSP) technique. TEM observations haverevealed that these electroformed copper liners of shaped charges have the grain size of about 1-3mu m and the grains have a preferential orientation distribution along the growth direction. EBSPanalysis has demonstrated that the as-formed copper liners of shaped charges exhibit amicro-texture, i.e. one type of fiber texture, and the preferred growth direction is normal to thesurface of the liners.展开更多
The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallograp...The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallographic orientation distribution of grains in recovered slugs which had undergone high-strain-rate plastic deformation during explosive detonation was investigated by electron backscattering Kikuchi pattern technique. Cellular structures formed by tangled dislocations and sub-grain boundaries consisting of dislocation arrays were detected in the recovered slugs. Some twins and slip dislocations were observed in specimen deformed at normal strain rate. It was found that dynamic recovery and recrystallization take place during high-strain-rate deformation due to the temperature rising, whereas the conventional slip mechanism operates during deformation at normal strain rate.展开更多
基金the National Natural Science Foundation of China (No. 59971008)
文摘The microstructures of copper liners of shaped charges prepared byelectroforming technique were investigated by transmission electron microscopy (TEM). Meanwhile, theorientations distributing of the grains in the electroformed copper liners of shaped charges wasexamined by the electron backscattering Kikuchi pattern (EBSP) technique. TEM observations haverevealed that these electroformed copper liners of shaped charges have the grain size of about 1-3mu m and the grains have a preferential orientation distribution along the growth direction. EBSPanalysis has demonstrated that the as-formed copper liners of shaped charges exhibit amicro-texture, i.e. one type of fiber texture, and the preferred growth direction is normal to thesurface of the liners.
文摘The paper deals with different plastic deformation behavior of electroformed copper liner of shaped charge, deformed at high strain rate (about 1×107s-1) and normal strain rate (4×10-4s-1). The crystallographic orientation distribution of grains in recovered slugs which had undergone high-strain-rate plastic deformation during explosive detonation was investigated by electron backscattering Kikuchi pattern technique. Cellular structures formed by tangled dislocations and sub-grain boundaries consisting of dislocation arrays were detected in the recovered slugs. Some twins and slip dislocations were observed in specimen deformed at normal strain rate. It was found that dynamic recovery and recrystallization take place during high-strain-rate deformation due to the temperature rising, whereas the conventional slip mechanism operates during deformation at normal strain rate.