Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ...Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.展开更多
QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in c...QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal.展开更多
The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens...The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens before and after thermal exposure. The results show that the fusion zone of TC11/Ti2 Al Nb dual-alloy joint welded by EBW is mainly composed of β phase. After deformation and heat treatment, the grain boundaries of the as-cast alloy are broken and the fusion zone mainly consists of β, α2and α phases. The fusion zone performs poor property in the tensile test. Specimens before and after thermal exposure all fail in this area under different deformation conditions. The ultimate tensile strength of specimens after heat treatment is up to 1190 MPa at room temperature. The joints by water quenching after deformation have better plasticity with an elongation up to 4.4%. After thermal exposure at 500 °C for 100 h, the tensile strength of the specimen slightly rises while the ductility changes a little. SEM observation shows that the fracture mechanism is predominantly transgranular under different deformation conditions.展开更多
Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning ...Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning electron microscopy and X-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. As a result, influences of filler metals on microstructures and mechanical properties of electron beam welded titanium-stainless steel joints were discussed. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. For each type of the filler metal, the type of solid solution and interfacial intermetallics depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti+Ni3Ti+NiTi2, TiFe, and Cu2Ti+CuTi+CuTi2 in the joints welded with Ni, V, and Cu filler metals, respectively. The tensile strengths of the joints were dependent on the hardness of the interfacial intermetallics. The joint welded with Ag filler metal had the highest tensile strength, which is about 310 MPa.展开更多
The Ti-24Al-15Nb-1.5Mo alloy, in the as-forged and heat-treated states, was joined to the as-forged TC 11 titanium alloy by electron beam welding with the heat inputs of 135 and 150 kJ/m. Then the microstructure and p...The Ti-24Al-15Nb-1.5Mo alloy, in the as-forged and heat-treated states, was joined to the as-forged TC 11 titanium alloy by electron beam welding with the heat inputs of 135 and 150 kJ/m. Then the microstructure and property of the Ti-24Al-15Nb- 1.5Mo/TC 11 welding interface were investigated. The results show that the phase constitution of the weld is not related to the heat input, and is mainly composed of α' phase. Moreover, the intermetallic phases of TiEAlNb, MoNb, NbaAl, and TiAl3 are formed in the weld zone. Therefore, the microhardness value of the weld zone is higher than that of the other portions in the same sample. The profile of the weld is asymmetrically fimnel-like. The grain sizes of the weld and its heat-affected zones are increased with increasing heat input. There is an obvious difference in the element content of the welding interface; only the alloying elements in the fusion zone reach a new balance during solidification.展开更多
Based on the binary alloy phase diagram of Re-Ti, the weldability of Re and BT5-1 titanium alloy was analyzed. Using two methods of direct electron beam welding (EBW-D) and intergradafion electron beam welding (EB...Based on the binary alloy phase diagram of Re-Ti, the weldability of Re and BT5-1 titanium alloy was analyzed. Using two methods of direct electron beam welding (EBW-D) and intergradafion electron beam welding (EBW-I), Re and BT5-1 was welded. Experimental results show that the joint figuration of EBW-D between Re and BT5-1 is not fine, and the joint is inclined to brittleness rupture. The joint figuration of EBW-I between Re and BT5-1 is fine. No cracking and other disfigures occur in the intergradation joint. The element distribution of Re, Me, and Ti in the weld metal is progressional diversification.展开更多
Electron beam welding plays an important role in the aerospace industry where components like sensors,gears,actuators and air frames used in aircraft and rocket engines were welded using this technique.Welding is norm...Electron beam welding plays an important role in the aerospace industry where components like sensors,gears,actuators and air frames used in aircraft and rocket engines were welded using this technique.Welding is normally performed in a vacuum to avoid the scatter of electron due to the presence of gas molecules in the atmosphere and hence electron beam welding process provides the greater results.But still joining of dissimilar metals is challenging.This paper represents review of process,generation and distribution of heat source various input parameters,materials,microstructure,mechanical strength and the possibilities of joining dissimilar metals using electron beam welding.展开更多
In order to estimate the residual stresses in Ti2AlNb alloy jointed by electron beam welding (EBW), a computational approach based on finite element method was developed. Meanwhile, experiments were carried out to ver...In order to estimate the residual stresses in Ti2AlNb alloy jointed by electron beam welding (EBW), a computational approach based on finite element method was developed. Meanwhile, experiments were carried out to verify the numerical results. The comparison between the simulation results and measurements suggests that the developed computational approach has sufficient accuracy to predict the welding residual stress distributions. The results show that the central area of the fusion zone suffers tensile stresses in three directions. When the other parameters remain unchanged, the focus current has great impact on the weld shape and size, and then affects the residual stress level significantly. Moreover, the thick plate full-penetrated EBW weld suffers near 1000 MPa tensile stress of Z-direction in the center of the fusion zone. The wider weld has lower tensile stress in Z-direction, resulting in lower risk for cracking.展开更多
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy...Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.展开更多
A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In...A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.展开更多
The metal transfer mode of electron beam welding (EBW) with filler wire was studied experimentally. The spatial position between the electron beam and the filler wire was defined. Basing on the charge coupled device...The metal transfer mode of electron beam welding (EBW) with filler wire was studied experimentally. The spatial position between the electron beam and the filler wire was defined. Basing on the charge coupled device (CCD) visual sensing system, the metal transfer mode of filler wire was investigated. The results showed that there were five transfer modes during EBW process due to different wire feed rates and spatial positions between beam and filler wire, such as short-circuiting mode, molten metal bridge mode, small droplet mode, big droplet mode and mixed mode. By comparing the weld appearance of different transfer modes, the molten metal bridge transfer was proved to be the best transfer mode.展开更多
The equalization of Ti 6Al 4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm eq...The equalization of Ti 6Al 4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm equiaxed grains by scanning electron beam welding. The anodic polarization curve of 150 μm equiaxed grains coincides with that of base metal. Equal corrosion resistance between weld metal and base metal was obtained. Uniform microstructure and solute distribution are the basis of equalization. Corrosion rate of weld with 150 μm equiaxed grains is the lowest, 2.45 times lower than that of 650 μm columnar grains. Weld strength is 98% as much as that of base metal, yield strength ratio is 99.5%, which is 3.6% higher than that of base metal.展开更多
The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatmen...The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatment cycles on the final microstructure before and after welding were examined. Welds were made on flat coupons using an EBW machine, and the two heat-treatment cycles were designed to reduce γ′ liquation before welding. Microstructural features were also examined by optical and scanning electron microscopy. The results showed that the change in the morphology and size of the γ′ precipitates in the pre-weld heat-treatment cycles changed the ability of the superalloy to release the tensile stresses caused by the matrix phase cooling after EBW. The high hardness in the welded coupons subjected to the first heat-treatment cycle resulted in greater resistance to stress release by the base alloy, and the concentration of stress in the base metal caused liquation cracks in the heat-affected zone and solidification cracks in the weld area.展开更多
The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (E...The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (EBLPWHT), in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were accepted. The experimental results show that, after EBLPWHT, the main microstructure of weld is changed from coarse acicular martensite into lath martensite, and base metal is changed from ferrite and perlite into upper bainite and residual austenite, however the microstructures of different zones of joints in FWPWHT conditions are tempered sorbite. The fatigue crack growth rate da/dN of welds and base metal are not obviously changed among EBLPWHT, FWPWHT test and as-welded (AW) test, as the mechanical properties of materials have a certain but not large effect on the da/dN of welded joints. The resistance to near threshold fatigue crack growth data of welded joints can be largely improved by EBLPWHT and it is related to microstructure and crack closure effect.展开更多
The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization a...The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.展开更多
A three-dimensional mathematical model using volume-of-fluid method is developed to investigate the heat transfer, fluid flow and keyhole dynamics during electron beam welding of 2219 aluminum alloy plate. In the mode...A three-dimensional mathematical model using volume-of-fluid method is developed to investigate the heat transfer, fluid flow and keyhole dynamics during electron beam welding of 2219 aluminum alloy plate. In the model, an adaptive heat source is employed to simulate the heating process of electron beam. Fluid flow is mainly driven by surface tension, thermo-capillary force, recoil pressure, hydrostatic pressure and thermal buoyancy. The thermal-fluid transport behaviors of welding pool during the drilling and backfilling stages of keyhole and the formation reason of the nail-shaped weld with an arc crater are systematically analyzed. Finally, all calculation results are validated by experiments and show good agreements.展开更多
Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joi...Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joint of the specimen welded by melting was well-formed but contained a large amount of intermetallic compounds. These intermetallic compounds were mainly composed of brittle phases such as TiAl and TiAl3 that decreased the ductility of the joints and resulted in a tensile strength 50 % lower than that of the base metal. In the melt-brazing experiment, direct heat was applied to the aluminum alloy to melt the aluminum rather than the titanium alloy, creating a well-formed joint. The weld was mainly composed of Al element and only a 3 ~m thickness of intermetallic compounds formed near the fusion line at the Ti side. The ductility and the performauce of the joint were significantly improved compared with those of the melting-only joint. In addition, the tensile strength of the joint reached 80 % of that of the aluminum base metal.展开更多
The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress i...The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress ; the residual stress in thickness direction is very small.展开更多
In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and nu...In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and numerical modeling of EBW process during welding of PH-CuCrZr alloy components were carried out.A 3D finite element model was developed to predict the output responses(bead penetration and bead width)as a function of EBW input parameters(beam current,acceleration voltage and weld speed).A combined circular and conical source with Gaussian heat distribution was used to model the deep penetration characteristic of the EBW process.Numerical modeling was carried out by developing user defined function in Ansys software.Numerical predictions were compared with the experimental results which had a good agreement with each other.The developed model can be used for parametric study in wide range of problems involving complex geometries which are to be welded using EBW process.The present work illustrates that the input current with a contribution of 44.56%and 81.13%is the most significant input parameter for the bead penetration and bead width,respectively.展开更多
SiCp/2024 matrix composites reinforced with SiC particles and 2219 aluminum alloy were joined via centered electron beam welding and deflection beam welding,respectively,and the microstructures and mechanical properti...SiCp/2024 matrix composites reinforced with SiC particles and 2219 aluminum alloy were joined via centered electron beam welding and deflection beam welding,respectively,and the microstructures and mechanical properties of these joints were investigated.The results revealed that SiC particle segregation was more likely during centered electron beam welding(than during deflection beam welding),and strong interface reactions led to the formation of many Al4C3 brittle intermetallic compounds.Moreover,the tensile strength of the joints was 104 MPa.The interface reaction was restrained via deflection electron beam welding,and only a few Al4C3 intermetallic compounds formed at the top of the joint and heat affected zone of SiCp/Al.Quasi-cleavage fracture occurred at the interface reaction layer of the base metal.Both methods yielded a hardness transition zone near the SiCp/2024 fusion zone,and the brittle intermetallic Al4C3compounds formed in this zone resulted in high hardness.展开更多
基金Project(2010CB731704)supported by the National Basic Research Program of ChinaProject(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.
基金Project (2010CB731704) supported by the National Basic Research Program of China
文摘QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal.
基金Project(51175431)supported by the National Natural Science Foundation of China
文摘The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens before and after thermal exposure. The results show that the fusion zone of TC11/Ti2 Al Nb dual-alloy joint welded by EBW is mainly composed of β phase. After deformation and heat treatment, the grain boundaries of the as-cast alloy are broken and the fusion zone mainly consists of β, α2and α phases. The fusion zone performs poor property in the tensile test. Specimens before and after thermal exposure all fail in this area under different deformation conditions. The ultimate tensile strength of specimens after heat treatment is up to 1190 MPa at room temperature. The joints by water quenching after deformation have better plasticity with an elongation up to 4.4%. After thermal exposure at 500 °C for 100 h, the tensile strength of the specimen slightly rises while the ductility changes a little. SEM observation shows that the fracture mechanism is predominantly transgranular under different deformation conditions.
基金Project(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning electron microscopy and X-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. As a result, influences of filler metals on microstructures and mechanical properties of electron beam welded titanium-stainless steel joints were discussed. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. For each type of the filler metal, the type of solid solution and interfacial intermetallics depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti+Ni3Ti+NiTi2, TiFe, and Cu2Ti+CuTi+CuTi2 in the joints welded with Ni, V, and Cu filler metals, respectively. The tensile strengths of the joints were dependent on the hardness of the interfacial intermetallics. The joint welded with Ag filler metal had the highest tensile strength, which is about 310 MPa.
基金supported by the National Natural Science Foundation of China (No.50775187)
文摘The Ti-24Al-15Nb-1.5Mo alloy, in the as-forged and heat-treated states, was joined to the as-forged TC 11 titanium alloy by electron beam welding with the heat inputs of 135 and 150 kJ/m. Then the microstructure and property of the Ti-24Al-15Nb- 1.5Mo/TC 11 welding interface were investigated. The results show that the phase constitution of the weld is not related to the heat input, and is mainly composed of α' phase. Moreover, the intermetallic phases of TiEAlNb, MoNb, NbaAl, and TiAl3 are formed in the weld zone. Therefore, the microhardness value of the weld zone is higher than that of the other portions in the same sample. The profile of the weld is asymmetrically fimnel-like. The grain sizes of the weld and its heat-affected zones are increased with increasing heat input. There is an obvious difference in the element content of the welding interface; only the alloying elements in the fusion zone reach a new balance during solidification.
文摘Based on the binary alloy phase diagram of Re-Ti, the weldability of Re and BT5-1 titanium alloy was analyzed. Using two methods of direct electron beam welding (EBW-D) and intergradafion electron beam welding (EBW-I), Re and BT5-1 was welded. Experimental results show that the joint figuration of EBW-D between Re and BT5-1 is not fine, and the joint is inclined to brittleness rupture. The joint figuration of EBW-I between Re and BT5-1 is fine. No cracking and other disfigures occur in the intergradation joint. The element distribution of Re, Me, and Ti in the weld metal is progressional diversification.
文摘Electron beam welding plays an important role in the aerospace industry where components like sensors,gears,actuators and air frames used in aircraft and rocket engines were welded using this technique.Welding is normally performed in a vacuum to avoid the scatter of electron due to the presence of gas molecules in the atmosphere and hence electron beam welding process provides the greater results.But still joining of dissimilar metals is challenging.This paper represents review of process,generation and distribution of heat source various input parameters,materials,microstructure,mechanical strength and the possibilities of joining dissimilar metals using electron beam welding.
基金Project(CALT201309)supported by Joint Innovation Fund for China Academy of Launch Vehicle Technology and Colleges
文摘In order to estimate the residual stresses in Ti2AlNb alloy jointed by electron beam welding (EBW), a computational approach based on finite element method was developed. Meanwhile, experiments were carried out to verify the numerical results. The comparison between the simulation results and measurements suggests that the developed computational approach has sufficient accuracy to predict the welding residual stress distributions. The results show that the central area of the fusion zone suffers tensile stresses in three directions. When the other parameters remain unchanged, the focus current has great impact on the weld shape and size, and then affects the residual stress level significantly. Moreover, the thick plate full-penetrated EBW weld suffers near 1000 MPa tensile stress of Z-direction in the center of the fusion zone. The wider weld has lower tensile stress in Z-direction, resulting in lower risk for cracking.
文摘Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.
文摘A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.
文摘The metal transfer mode of electron beam welding (EBW) with filler wire was studied experimentally. The spatial position between the electron beam and the filler wire was defined. Basing on the charge coupled device (CCD) visual sensing system, the metal transfer mode of filler wire was investigated. The results showed that there were five transfer modes during EBW process due to different wire feed rates and spatial positions between beam and filler wire, such as short-circuiting mode, molten metal bridge mode, small droplet mode, big droplet mode and mixed mode. By comparing the weld appearance of different transfer modes, the molten metal bridge transfer was proved to be the best transfer mode.
文摘The equalization of Ti 6Al 4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm equiaxed grains by scanning electron beam welding. The anodic polarization curve of 150 μm equiaxed grains coincides with that of base metal. Equal corrosion resistance between weld metal and base metal was obtained. Uniform microstructure and solute distribution are the basis of equalization. Corrosion rate of weld with 150 μm equiaxed grains is the lowest, 2.45 times lower than that of 650 μm columnar grains. Weld strength is 98% as much as that of base metal, yield strength ratio is 99.5%, which is 3.6% higher than that of base metal.
文摘The weldability of the ZhS6U nickel-based superalloy, which is prone to solidification cracking during electron-beam welding(EBW) repair processes, was investigated. The effects of two different pre-weld heat-treatment cycles on the final microstructure before and after welding were examined. Welds were made on flat coupons using an EBW machine, and the two heat-treatment cycles were designed to reduce γ′ liquation before welding. Microstructural features were also examined by optical and scanning electron microscopy. The results showed that the change in the morphology and size of the γ′ precipitates in the pre-weld heat-treatment cycles changed the ability of the superalloy to release the tensile stresses caused by the matrix phase cooling after EBW. The high hardness in the welded coupons subjected to the first heat-treatment cycle resulted in greater resistance to stress release by the base alloy, and the concentration of stress in the base metal caused liquation cracks in the heat-affected zone and solidification cracks in the weld area.
基金thefoundationoftheNationalDefenseTechnologyKeyLaboratory (No .99JS5 0 .3 .2JW14 0 2 )
文摘The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (EBLPWHT), in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were accepted. The experimental results show that, after EBLPWHT, the main microstructure of weld is changed from coarse acicular martensite into lath martensite, and base metal is changed from ferrite and perlite into upper bainite and residual austenite, however the microstructures of different zones of joints in FWPWHT conditions are tempered sorbite. The fatigue crack growth rate da/dN of welds and base metal are not obviously changed among EBLPWHT, FWPWHT test and as-welded (AW) test, as the mechanical properties of materials have a certain but not large effect on the da/dN of welded joints. The resistance to near threshold fatigue crack growth data of welded joints can be largely improved by EBLPWHT and it is related to microstructure and crack closure effect.
文摘The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.
文摘A three-dimensional mathematical model using volume-of-fluid method is developed to investigate the heat transfer, fluid flow and keyhole dynamics during electron beam welding of 2219 aluminum alloy plate. In the model, an adaptive heat source is employed to simulate the heating process of electron beam. Fluid flow is mainly driven by surface tension, thermo-capillary force, recoil pressure, hydrostatic pressure and thermal buoyancy. The thermal-fluid transport behaviors of welding pool during the drilling and backfilling stages of keyhole and the formation reason of the nail-shaped weld with an arc crater are systematically analyzed. Finally, all calculation results are validated by experiments and show good agreements.
文摘Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joint of the specimen welded by melting was well-formed but contained a large amount of intermetallic compounds. These intermetallic compounds were mainly composed of brittle phases such as TiAl and TiAl3 that decreased the ductility of the joints and resulted in a tensile strength 50 % lower than that of the base metal. In the melt-brazing experiment, direct heat was applied to the aluminum alloy to melt the aluminum rather than the titanium alloy, creating a well-formed joint. The weld was mainly composed of Al element and only a 3 ~m thickness of intermetallic compounds formed near the fusion line at the Ti side. The ductility and the performauce of the joint were significantly improved compared with those of the melting-only joint. In addition, the tensile strength of the joint reached 80 % of that of the aluminum base metal.
基金The project is supported by the Found of Key Fields Project of Inner Mongolia Education Department (No ZL02021)
文摘The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress ; the residual stress in thickness direction is very small.
文摘In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and numerical modeling of EBW process during welding of PH-CuCrZr alloy components were carried out.A 3D finite element model was developed to predict the output responses(bead penetration and bead width)as a function of EBW input parameters(beam current,acceleration voltage and weld speed).A combined circular and conical source with Gaussian heat distribution was used to model the deep penetration characteristic of the EBW process.Numerical modeling was carried out by developing user defined function in Ansys software.Numerical predictions were compared with the experimental results which had a good agreement with each other.The developed model can be used for parametric study in wide range of problems involving complex geometries which are to be welded using EBW process.The present work illustrates that the input current with a contribution of 44.56%and 81.13%is the most significant input parameter for the bead penetration and bead width,respectively.
基金Project was supported by the National Nature Science Foundation of China(51375115).
文摘SiCp/2024 matrix composites reinforced with SiC particles and 2219 aluminum alloy were joined via centered electron beam welding and deflection beam welding,respectively,and the microstructures and mechanical properties of these joints were investigated.The results revealed that SiC particle segregation was more likely during centered electron beam welding(than during deflection beam welding),and strong interface reactions led to the formation of many Al4C3 brittle intermetallic compounds.Moreover,the tensile strength of the joints was 104 MPa.The interface reaction was restrained via deflection electron beam welding,and only a few Al4C3 intermetallic compounds formed at the top of the joint and heat affected zone of SiCp/Al.Quasi-cleavage fracture occurred at the interface reaction layer of the base metal.Both methods yielded a hardness transition zone near the SiCp/2024 fusion zone,and the brittle intermetallic Al4C3compounds formed in this zone resulted in high hardness.