The post-cure kinetics of electron beam (EB) curing of epoxy resin initiated by diaryiodinium was investigated. The post-cure reaction fits first order reaction kinetics. The reaction rate constant increases with incr...The post-cure kinetics of electron beam (EB) curing of epoxy resin initiated by diaryiodinium was investigated. The post-cure reaction fits first order reaction kinetics. The reaction rate constant increases with increasing treatment temperature of post-cure. The reaction rate of post-cure is much lower than the rate of its reaction on electron beam treatment.展开更多
Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on t...Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250 degreesC.展开更多
Electron beam curing is demonstrated as a promising method for high speed,low cost and environmentally friendly battery electrode manufacturing.This work reports transfer of this process to pilot scale equipment and e...Electron beam curing is demonstrated as a promising method for high speed,low cost and environmentally friendly battery electrode manufacturing.This work reports transfer of this process to pilot scale equipment and evaluation of electrochemical performance in prototype 1.5 Ah pouch cells.Thick LiNi0.5Mn0.3Co0.2O2(NMC532)composite electrodes with an areal loading of 25 mg cm^-2(~4 mAh cm^-2)are successfully cured at a line speed of 500 feet per minute at 275 keV.Compared to the NMC532 cathode processed via a conventional coating method,the electron beam cured electrodes show higher capacity fade in the first 100 cycles,but similar fade rate afterwards.Further improvement strategies are proposed and discussed.This work demonstrates that electron beam curing is a promising method for manufacturing thick battery electrodes at high speeds and low capital/operation cost.展开更多
研究了一种制备水性聚氨酯丙烯酸酯的新方法,通过在扩链剂分子结构中组装离子基团来改善亲水性,解决了聚氨酯丙烯酸酯与水难相溶的问题。采用这种方法制备了一种聚氨酯丙烯酸酯产物,使用FTIR和1 H NMR对产物结构进行了表征。对产物与水...研究了一种制备水性聚氨酯丙烯酸酯的新方法,通过在扩链剂分子结构中组装离子基团来改善亲水性,解决了聚氨酯丙烯酸酯与水难相溶的问题。采用这种方法制备了一种聚氨酯丙烯酸酯产物,使用FTIR和1 H NMR对产物结构进行了表征。对产物与水的储存稳定性、黏度、电子束固化行为及固化后性能进行了研究。结果表明,分散乳液储存稳定性好,经电子束固化后性能(如硬度、附着力、光泽度、柔韧性、热稳定性)优良。展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No. 59833110).
文摘The post-cure kinetics of electron beam (EB) curing of epoxy resin initiated by diaryiodinium was investigated. The post-cure reaction fits first order reaction kinetics. The reaction rate constant increases with increasing treatment temperature of post-cure. The reaction rate of post-cure is much lower than the rate of its reaction on electron beam treatment.
文摘Electron beam (EB) curing of composites has many advantages. Heat-resistant EB-curing composites could substitute polyimide composites used in aeronautical engines. In this paper, the effects of catalyst and dose on the cured resin were investigated. The heat-resistance of the resin cured by EB was evaluated by dynamic mechanical analysis (DMA). The experimental results show that the mechanical properties of the composites cured by EB could meet the specifications of aeronautical engines at 250 degreesC.
基金sponsored by the Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO) (Deputy Director: David Howell) Applied Battery Research subprogram (Program Manager: Peter Faguy)
文摘Electron beam curing is demonstrated as a promising method for high speed,low cost and environmentally friendly battery electrode manufacturing.This work reports transfer of this process to pilot scale equipment and evaluation of electrochemical performance in prototype 1.5 Ah pouch cells.Thick LiNi0.5Mn0.3Co0.2O2(NMC532)composite electrodes with an areal loading of 25 mg cm^-2(~4 mAh cm^-2)are successfully cured at a line speed of 500 feet per minute at 275 keV.Compared to the NMC532 cathode processed via a conventional coating method,the electron beam cured electrodes show higher capacity fade in the first 100 cycles,but similar fade rate afterwards.Further improvement strategies are proposed and discussed.This work demonstrates that electron beam curing is a promising method for manufacturing thick battery electrodes at high speeds and low capital/operation cost.
文摘研究了一种制备水性聚氨酯丙烯酸酯的新方法,通过在扩链剂分子结构中组装离子基团来改善亲水性,解决了聚氨酯丙烯酸酯与水难相溶的问题。采用这种方法制备了一种聚氨酯丙烯酸酯产物,使用FTIR和1 H NMR对产物结构进行了表征。对产物与水的储存稳定性、黏度、电子束固化行为及固化后性能进行了研究。结果表明,分散乳液储存稳定性好,经电子束固化后性能(如硬度、附着力、光泽度、柔韧性、热稳定性)优良。