Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative s...Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative system concepts in X-ray and computer tomography. This paper proposes a novel electron beam focusing, shaping,and deflection electron gun for distributed X-ray sources.The electron gun uses a dispenser cathode as an electron emitter, a mesh grid to control emission current, and two electrostatic lenses for beam shaping, focusing, and deflection. Novel focusing and deflecting electrodes were designed to increase the number of focal spots in the distributed source. Two identical half-rectangle opening electrodes are controlled by adjusting the potential of the two electrodes to control the electron beam trajectory, and then, multifocal spots are obtained on the anode target. The electron gun can increase the spatial density of the distributed X-ray sources, thereby improving the image quality. The beam experimental results show that the focal spot sizes of the deflected(deflected amplitude 10.5 mm)and non-deflected electron beams at full width at half maximum are 0.80 mm 90.50 mm and 0.55 mm 90.40 mm, respectively(anode voltage 160 kV; beam current 30 mA). The imaging experimental results demonstrate the excellent spatial resolution and time resolution of an imaging system built with the sources, which has an excellent imaging effect on a field-programmable gate array chip and a rotating metal disk.展开更多
A new and simple type of electron gun is presented.Unlike conventional electron guns,which require a heated filament or extractor,accelerator and focusing electrodes,this gun uses the collimated electron microchannels...A new and simple type of electron gun is presented.Unlike conventional electron guns,which require a heated filament or extractor,accelerator and focusing electrodes,this gun uses the collimated electron microchannels of an inertial electrostatic confinement(IEC) discharge to achieve the same outcome.A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge.Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode.This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid.The internal operating pressure range of the gun is 35-190 m Torr.A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential.The chamber was operated at pressures of 4-12 m Torr.The measured current produced by the gun was 0.1-3 m A(0.2-14 m A corrected measurement) for discharge currents of 1-45 m A and discharge voltages of 0.5-12 k V.The collimated electron beam emerges from the aperture into the vacuum chamber.The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun.This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.展开更多
为了提高电子束偏转扫描频率和磁场均匀性,采用Helmholtz空心线圈结构设计了一种低感抗电子枪偏转扫描线圈。采用ANSYS有限元分析软件对偏转扫描线圈的电磁场分布进行仿真,并采用高斯计对线圈内部的电磁场进行了测量,仿真结果与实际测...为了提高电子束偏转扫描频率和磁场均匀性,采用Helmholtz空心线圈结构设计了一种低感抗电子枪偏转扫描线圈。采用ANSYS有限元分析软件对偏转扫描线圈的电磁场分布进行仿真,并采用高斯计对线圈内部的电磁场进行了测量,仿真结果与实际测量值基本吻合,线圈内部的磁感应强度大小和电磁场分布的均匀性可以满足电子束高频偏转扫描的要求。实际扫描试验表明,该线圈实现了两点电子束高频偏转扫描,扫描频率可达30 k Hz。展开更多
文摘Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative system concepts in X-ray and computer tomography. This paper proposes a novel electron beam focusing, shaping,and deflection electron gun for distributed X-ray sources.The electron gun uses a dispenser cathode as an electron emitter, a mesh grid to control emission current, and two electrostatic lenses for beam shaping, focusing, and deflection. Novel focusing and deflecting electrodes were designed to increase the number of focal spots in the distributed source. Two identical half-rectangle opening electrodes are controlled by adjusting the potential of the two electrodes to control the electron beam trajectory, and then, multifocal spots are obtained on the anode target. The electron gun can increase the spatial density of the distributed X-ray sources, thereby improving the image quality. The beam experimental results show that the focal spot sizes of the deflected(deflected amplitude 10.5 mm)and non-deflected electron beams at full width at half maximum are 0.80 mm 90.50 mm and 0.55 mm 90.40 mm, respectively(anode voltage 160 kV; beam current 30 mA). The imaging experimental results demonstrate the excellent spatial resolution and time resolution of an imaging system built with the sources, which has an excellent imaging effect on a field-programmable gate array chip and a rotating metal disk.
文摘A new and simple type of electron gun is presented.Unlike conventional electron guns,which require a heated filament or extractor,accelerator and focusing electrodes,this gun uses the collimated electron microchannels of an inertial electrostatic confinement(IEC) discharge to achieve the same outcome.A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge.Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode.This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid.The internal operating pressure range of the gun is 35-190 m Torr.A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential.The chamber was operated at pressures of 4-12 m Torr.The measured current produced by the gun was 0.1-3 m A(0.2-14 m A corrected measurement) for discharge currents of 1-45 m A and discharge voltages of 0.5-12 k V.The collimated electron beam emerges from the aperture into the vacuum chamber.The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun.This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.
文摘为了提高电子束偏转扫描频率和磁场均匀性,采用Helmholtz空心线圈结构设计了一种低感抗电子枪偏转扫描线圈。采用ANSYS有限元分析软件对偏转扫描线圈的电磁场分布进行仿真,并采用高斯计对线圈内部的电磁场进行了测量,仿真结果与实际测量值基本吻合,线圈内部的磁感应强度大小和电磁场分布的均匀性可以满足电子束高频偏转扫描的要求。实际扫描试验表明,该线圈实现了两点电子束高频偏转扫描,扫描频率可达30 k Hz。