期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Establishing an Initial Electron Beam Model with Monte Carlo Simulation for a Single 6 MV X-ray Medical Linac Based on Particle Dynamics Characteristics
1
作者 ZHAO Hong-bin KONG Xiao-xiao +2 位作者 LI Quan-feng LIN Xiao-qi BAO Shang-lian 《Chinese Journal of Biomedical Engineering(English Edition)》 2009年第2期47-54,66,共9页
Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 med... Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 medical linac.Methods and Materials:1.We adapted the treatment head configuration of BJ-6 medical linac made by Beijing Medical Equipment Institute(BMEI)as the radiation system for this study.2.Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum,the spatial intensity distribution,and the beam incidence angle.3.Analyze the 6 MV X-ray beam characteristics of PDDc,OARc in a water phantom by using Monte Carlo simulation(BEAMnrc,DOSXYZnrc)for a preset of the initial electron beam parameters which have been determined by TRSV,do the comparisons of the measured results of PDDm,OARm in a real water phantom,and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%.Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%.Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ-6,modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results. 展开更多
关键词 initial electron beam model particle dynamic calculation Monte Carlosimulation medical linear accelerator
下载PDF
Monte Carlo Modeling and Verification of 6 MV Linear Accelerator
2
作者 Shixiong Lu Haijun Deng 《World Journal of Engineering and Technology》 2022年第2期213-223,共11页
Purpose: To model the ELEKTA COMPACT accelerator head by using EGSnrc/BEAMnrc/DOSXYZnrc and to validatethe simulation according to the depth-dose and lateral profiles of different radiation fields measured by the... Purpose: To model the ELEKTA COMPACT accelerator head by using EGSnrc/BEAMnrc/DOSXYZnrc and to validatethe simulation according to the depth-dose and lateral profiles of different radiation fields measured by the water phantom. Methods: IBA Blue Water Phantom2 and CC13 Ionization Chamber were used to measure the depth-dose curves at 10 cm × 10 cm field and profile curves at 10 cm depth underwater. In BEAMnrc, the main components of accelerator head and the initial electron beam are established based on the specifications file, and the phase space file containing the photon beam information is generated. In DOXYZnrc, phase space files were used to irradiate a homogeneous water phantom of the same size as the IBA water phantom, and the simulated percentage depth dose curves and lateral profiles were outputted. The accuracy of the model was evaluated by mean square error (MSE) compared with the measured data. PDD curves are used to determine the energy of the initial electron beam. Dose profile curves are used to adjust the flattening filter. The penumbra on lateral profiles is used to adjust the full-width half-maximum (FWHM) of the electron source. Result: The electron energy of 5.8 MeV was considered the best match after comparing the PDD curves of 5.6 - 6.2 MeV electron beams. The flattening filter can only be adjusted by trial. In the final result, the maximum fluctuation of profile curve within 80% of the maximum field size is less than 3%, which meets the requirements of field flatness. The optimum FWHM for different fields is not consistent due to the Transmission penumbra. But a match can be approached by adjusting the FWHM every 10 cm field size. 展开更多
关键词 EGSnrc/beamnrc/DOSXYZnrc Linear Accelerator Initial electron beam PDD Lateral Profiles
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部