Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd...Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices.展开更多
The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method,...The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method, respectively. The microstructure and properties of the sheet were investigated by AFM, SEM and EDS. The results show that the TiAl based alloys sheet has a good surface quality, and its microstructure is columnar crystal. The component of the alloys indicates a regular and periodical gradient change which leads to the spontaneous delamination along the normal direction of substrate. In the TiAl/Nb laminated composites alternating overlaid by TiAl of 24 layers and Nb of 23 layers, the interface of each layer evenly distributed throughout the cross-section is transparent, and the interlayer spacing is about 8μm. The component of TiAl layers also changes regularly along the normal direction of substrate, but no delamination phenomenon is found. The TiAl/Nb laminated composites have better ductility than the TiAl-based alloys sheet.展开更多
We have investigated the electron affinity of Si-doped AlN films(N_(Si)= 1.0 × 10^(18)–1.0 × 10_(19)cm^(-3)) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor dep...We have investigated the electron affinity of Si-doped AlN films(N_(Si)= 1.0 × 10^(18)–1.0 × 10_(19)cm^(-3)) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition(MOCVD) under low pressure on the ntype(001)6H–SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy(UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 e V for the 400-nm-thick one.Accompanying the x-ray photoelectron spectroscopy(XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations.展开更多
InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-D...InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.展开更多
The gas phase process of diamond film deposition from CH4/H2 gas mixture by electron-assisted chemical vapor deposition is simulated by the Monte-Carlo method. The electron velocity distribution under different E/P (t...The gas phase process of diamond film deposition from CH4/H2 gas mixture by electron-assisted chemical vapor deposition is simulated by the Monte-Carlo method. The electron velocity distribution under different E/P (the ratio of the electric field to gas pressure) is obtained, and the velocity profile is asymmetric. The variation of the number density of CH3 and H with different CH4 concentrations and gas pressure is investigated, and the optimal experimental parameters are obtained: the gas pressure is in the range of 2.5 kPa - 15 kPa and the CH4 concentration is in the range of 0.5% - 1%. The energy carried by the fragment CH3 as the function of the experiment parameters is investigated to explain the diamond growth at low temperature. These results will be helpful to the selection of optimum experimental conditions for high quality diamond films deposition in EACVD and the modeling of plasma chemical vapor deposition.展开更多
Laminates with alternating layers of NiCoCrAlY and NiCr were fabricated by using electron beam physical vapor deposition (EB-PVD) method. The influence of the substrate temperature on morphology of the laminates was i...Laminates with alternating layers of NiCoCrAlY and NiCr were fabricated by using electron beam physical vapor deposition (EB-PVD) method. The influence of the substrate temperature on morphology of the laminates was investigated. The results show that in order to produce NiCoCrAlY/NiCr laminates with lower porosity, higher substrate temperature is required. The mechanical properties of the as-deposited samples and heat-treated samples were examined using tensile tests. The stress-strain curve of the as-deposited laminate shows a typical characteristic of multilayered materials and the fracture behavior is improved by annealing the samples at high temperatures. The tensile strength of the samples annealed at 760℃ is 658.4MPa, and the elongation reaches 6.2%.展开更多
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct...Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.展开更多
Ti-Al thin sheet with dimension of 450 mm×450 mm×0.2 mm was prepared by electron beam physical vapor deposition(EB-PVD) technology. The surface and cross-section pattern of as-deposited sample were studied b...Ti-Al thin sheet with dimension of 450 mm×450 mm×0.2 mm was prepared by electron beam physical vapor deposition(EB-PVD) technology. The surface and cross-section pattern of as-deposited sample were studied by SEM and AFM,and then the composition and phase were analysed by XRD and EPMA. Finally,the effect on deposit by re-evaporation of Al was explored by calculating the ratio of re-evaporating capacity with depositing capacity of Al on the substrate. The results indicate that the evaporation process with Nb addition into the molten pool makes it earlier to reach the steady-state. The existing equiaxed crystal and columnar crystal along the cross-sectional may be caused by the transformation latent heat released during the transition course of atoms from gaseous state to solid state. The effect on deposit by re-evaporation of Al can be neglected because the re-evaporating capacity of Al is far below that of the depositing capacity.展开更多
Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron ...Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions.展开更多
In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grai...In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.展开更多
Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composi...Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composition of molten pool, vapor and deposit with time, length of transient time and the composition of molten pool, deposit under the steady condition were presented according to the numerical model. The experimental results on the composition of deposit were compared to the data calculated through the model. The results show that the model is applicable, after evaporating for about 50min, the compositions of the deposit are equal to those of the ingot.展开更多
Tattoo electronics has attracted intensive interest in recent years due to its comfortable wearing and imperceivable sensing,and has been broadly applied in wearable healthcare and human-machine interface.However,the ...Tattoo electronics has attracted intensive interest in recent years due to its comfortable wearing and imperceivable sensing,and has been broadly applied in wearable healthcare and human-machine interface.However,the tattoo electrodes are mostly composed of metal films and conductive polymers.Two-dimensional(2D)materials,which are superior in conductivity and stability,are barely studied for electronic tattoos.Herein,we reported a novel electronic tattoo based on large-area Mo_(2)C film grown by chemical vapor deposition(CVD),and applied it to accurately and imperceivably acquire on-body electrophysiological signals and interface with robotics.High-quality Mo_(2)C film was obtained via optimizing the distribution of gas flow during CVD growth.According to the finite element simulation(FES),bottom surface of Cu foil covers more stable gas flow than the top surface,thus leading to more uniform Mo_(2)C film.The resulting Mo_(2)C film was transferred onto tattoo paper,showing a total thickness of~3μm,sheet resistance of 60-150Ω/sq,and skin-electrode impedance of~5×10^(5)Ω.Such thin Mo_(2)C electronic tattoo(MCET in short)can form conformal contact with skin and accurately record electrophysiological signals,including electromyography(EMG),electrocardiogram(ECG),and electrooculogram(EOG).These body signals collected by MCET can not only reflect the health status but also be transformed to control the robotics for human-machine interface.展开更多
Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) ...Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal reso-nators, deposited film thickness distribution measured by Rutherford backscat-tering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.展开更多
Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristic...Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristics were implemented by Keithley 4200 Semiconductor Characterization System. The experimental results indicated that a maximum drain current over 400 mA/mm and a peak external transconductance of 215 mS/mm can be achieved in the initial HEMTs. However, after the devices endured a 10-h thermal aging in furnace under nitrogen condition at 300 ℃, the maximum reduction of saturation drain current and external transconductance at high gate-source voltage and drain-source voltage were 30% and 35%, respectively. Additionally, an increased drain-source leakage current was observed at three-terminal off-state. It was inferred that the degradation was mainly related to electron-trapping defects in the InAlN barrier layer.展开更多
We present a scalable, reproducible and economic process for the fabrication of diamond and diamond-graphene hybrid films using paraffin wax as a seeding source for diamond. The films were characterized using Raman sp...We present a scalable, reproducible and economic process for the fabrication of diamond and diamond-graphene hybrid films using paraffin wax as a seeding source for diamond. The films were characterized using Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Raman spectra show the characteristic band of diamond at 1332 cm-1 and the D, G, and 2D bands of graphene at 1360, 1582 and 2709 cm-1, respectively. Electron microscopy confirms the microcrystalline nature of the diamond films with crystal size in the range of 0.5 μm to 1.0 μm, and the hybrid film consists of microcrystalline diamond attached to thin, semi-transparent graphene flakes. The graphene-diamond hybrid films exhibit a turn-on field of about 3.6 V/μm with a prolonged current stability of at least 135 h.展开更多
基金supported by National Natural Science Foundation of China (No.11974301)Key Research and Development Program of Hunan Province (No.2022GK2007)+2 种基金Key Project from Department Education of Hunan Province (No.22A0123)Scientific Research Fund of Hunan Provincial Education Department (No.21B0136)National college students innovation and entrepreneurship training program (No.S202310530016)。
文摘Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices.
基金Projects(90205034, 90405016) supported by the National Natural Science Foundation of China
文摘The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method, respectively. The microstructure and properties of the sheet were investigated by AFM, SEM and EDS. The results show that the TiAl based alloys sheet has a good surface quality, and its microstructure is columnar crystal. The component of the alloys indicates a regular and periodical gradient change which leads to the spontaneous delamination along the normal direction of substrate. In the TiAl/Nb laminated composites alternating overlaid by TiAl of 24 layers and Nb of 23 layers, the interface of each layer evenly distributed throughout the cross-section is transparent, and the interlayer spacing is about 8μm. The component of TiAl layers also changes regularly along the normal direction of substrate, but no delamination phenomenon is found. The TiAl/Nb laminated composites have better ductility than the TiAl-based alloys sheet.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574135,61574134,61474142,61474110,61377020,61376089,61223005,and 61321063)the One Hundred Person Project of the Chinese Academy of Sciencesthe Basic Research Project of Jiangsu Province,China(Grant No.BK20130362)
文摘We have investigated the electron affinity of Si-doped AlN films(N_(Si)= 1.0 × 10^(18)–1.0 × 10_(19)cm^(-3)) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition(MOCVD) under low pressure on the ntype(001)6H–SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy(UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 e V for the 400-nm-thick one.Accompanying the x-ray photoelectron spectroscopy(XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations.
基金Project(Z132012A001)supported by the Technical Basis Research Program in Science and Industry Bureau of ChinaProject(61201028,60876009)supported by the National Natural Science Foundation of China
文摘InGaAs high electron mobility transistors (HEMTs) on InP substrate with very good device performance have been grown by mental organic chemical vapor deposition (MOCVD). Room temperature Hall mobilities of the 2-DEG are measured to be over 8 700 cm^2/V-s with sheet carrier densities larger than 4.6× 10^12 cm^ 2. Transistors with 1.0 μm gate length exhibits transconductance up to 842 mS/ram. Excellent depletion-mode operation, with a threshold voltage of-0.3 V and IDss of 673 mA/mm, is realized. The non-alloyed ohmic contact special resistance is as low as 1.66×10^-8 Ω/cm^2, which is so far the lowest ohmic contact special resistance. The unity current gain cut off frequency (fT) and the maximum oscillation frequency (fmax) are 42.7 and 61.3 GHz, respectively. These results are very encouraging toward manufacturing InP-based HEMT by MOCVD.
基金The project supported by the Nature Science Foundation of Hebei Province, China (No 502121)
文摘The gas phase process of diamond film deposition from CH4/H2 gas mixture by electron-assisted chemical vapor deposition is simulated by the Monte-Carlo method. The electron velocity distribution under different E/P (the ratio of the electric field to gas pressure) is obtained, and the velocity profile is asymmetric. The variation of the number density of CH3 and H with different CH4 concentrations and gas pressure is investigated, and the optimal experimental parameters are obtained: the gas pressure is in the range of 2.5 kPa - 15 kPa and the CH4 concentration is in the range of 0.5% - 1%. The energy carried by the fragment CH3 as the function of the experiment parameters is investigated to explain the diamond growth at low temperature. These results will be helpful to the selection of optimum experimental conditions for high quality diamond films deposition in EACVD and the modeling of plasma chemical vapor deposition.
文摘Laminates with alternating layers of NiCoCrAlY and NiCr were fabricated by using electron beam physical vapor deposition (EB-PVD) method. The influence of the substrate temperature on morphology of the laminates was investigated. The results show that in order to produce NiCoCrAlY/NiCr laminates with lower porosity, higher substrate temperature is required. The mechanical properties of the as-deposited samples and heat-treated samples were examined using tensile tests. The stress-strain curve of the as-deposited laminate shows a typical characteristic of multilayered materials and the fracture behavior is improved by annealing the samples at high temperatures. The tensile strength of the samples annealed at 760℃ is 658.4MPa, and the elongation reaches 6.2%.
基金Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02308-002the National Natural Sciences Foundation of China under Grant Nos 61574108,61334002,61474086 and 61306017
文摘Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.
基金Project(NCET2004) supported by the Program for New Century Excellent Talents in University, China
文摘Ti-Al thin sheet with dimension of 450 mm×450 mm×0.2 mm was prepared by electron beam physical vapor deposition(EB-PVD) technology. The surface and cross-section pattern of as-deposited sample were studied by SEM and AFM,and then the composition and phase were analysed by XRD and EPMA. Finally,the effect on deposit by re-evaporation of Al was explored by calculating the ratio of re-evaporating capacity with depositing capacity of Al on the substrate. The results indicate that the evaporation process with Nb addition into the molten pool makes it earlier to reach the steady-state. The existing equiaxed crystal and columnar crystal along the cross-sectional may be caused by the transformation latent heat released during the transition course of atoms from gaseous state to solid state. The effect on deposit by re-evaporation of Al can be neglected because the re-evaporating capacity of Al is far below that of the depositing capacity.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY16F040003 and LY16A040007)the National Natural Science Foundation of China(Grant Nos.51401069 and 11574067)
文摘Atomic-layer MoS_2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy(AFM), x-ray diffraction(XRD), high-resolution transition electron microscopy(HRTEM), photoluminescence(PL), and x-ray photoelectron spectroscopy(XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation(002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasihoneycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS_2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS_2. The stoichiometric mole ratio of S/Mo is about 2.0–2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS_2 under our experimental conditions.
基金financially supported by The Program for New Century Excellent Talents in University (NCET)the National Natural Science Foundation of China (NSFC) under Grant No.50772041
文摘In this paper,we report the effect of nitrogen on the deposition and properties of boron doped diamond films synthesized by hot filament chemical vapor deposition.The diamond films consisting of micro-grains(nano-grains) were realized with low(high) boron source flow rate during the growth processes.The transition of micro-grains to nano-grains is speculated to be strongly(weekly) related with the boron(nitrogen) flow rate.The grain size and Raman spectral feature vary insignificantly as a function of the nitrogen introduction at a certain boron flow rate.The variation of electron field emission characteristics dependent on nitrogen is different between microcrystalline and nanocrystalline boron doped diamond samples,which are related to the combined phase composition,boron doping level and texture structure.There is an optimum nitrogen proportion to improve the field emission properties of the boron-doped films.
文摘Based on Langmuir equation and thermodynamic properties of iron-silicon binary alloy, a mathematical model about the process of electron-beam evaporated binary alloy Fe-6.5%Si was established. Variation of the composition of molten pool, vapor and deposit with time, length of transient time and the composition of molten pool, deposit under the steady condition were presented according to the numerical model. The experimental results on the composition of deposit were compared to the data calculated through the model. The results show that the model is applicable, after evaporating for about 50min, the compositions of the deposit are equal to those of the ingot.
基金supported by the National Natural Science Foundation of China(Nos.21903007,22072006,and 22275022)Young Thousand Talents Program(No.110532103)+2 种基金Beijing Normal University Startup funding(No.312232102)Beijing Municipal Science&Technology Commission(No.Z191100000819002)the Fundamental Research Funds for the Central Universities(No.310421109).
文摘Tattoo electronics has attracted intensive interest in recent years due to its comfortable wearing and imperceivable sensing,and has been broadly applied in wearable healthcare and human-machine interface.However,the tattoo electrodes are mostly composed of metal films and conductive polymers.Two-dimensional(2D)materials,which are superior in conductivity and stability,are barely studied for electronic tattoos.Herein,we reported a novel electronic tattoo based on large-area Mo_(2)C film grown by chemical vapor deposition(CVD),and applied it to accurately and imperceivably acquire on-body electrophysiological signals and interface with robotics.High-quality Mo_(2)C film was obtained via optimizing the distribution of gas flow during CVD growth.According to the finite element simulation(FES),bottom surface of Cu foil covers more stable gas flow than the top surface,thus leading to more uniform Mo_(2)C film.The resulting Mo_(2)C film was transferred onto tattoo paper,showing a total thickness of~3μm,sheet resistance of 60-150Ω/sq,and skin-electrode impedance of~5×10^(5)Ω.Such thin Mo_(2)C electronic tattoo(MCET in short)can form conformal contact with skin and accurately record electrophysiological signals,including electromyography(EMG),electrocardiogram(ECG),and electrooculogram(EOG).These body signals collected by MCET can not only reflect the health status but also be transformed to control the robotics for human-machine interface.
基金the National Natural Science Foundation of China (Grant Nos. 90205024, 10502051 and 10621202)
文摘Thickness and component distributions of large-area thin films are an issue of in-ternational concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal reso-nators, deposited film thickness distribution measured by Rutherford backscat-tering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.
基金Supported by National Natural Science Foundation of China(No.60876009)Natural Science Foundation of Tianjin(No.09JCZDJC16600)
文摘Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristics were implemented by Keithley 4200 Semiconductor Characterization System. The experimental results indicated that a maximum drain current over 400 mA/mm and a peak external transconductance of 215 mS/mm can be achieved in the initial HEMTs. However, after the devices endured a 10-h thermal aging in furnace under nitrogen condition at 300 ℃, the maximum reduction of saturation drain current and external transconductance at high gate-source voltage and drain-source voltage were 30% and 35%, respectively. Additionally, an increased drain-source leakage current was observed at three-terminal off-state. It was inferred that the degradation was mainly related to electron-trapping defects in the InAlN barrier layer.
文摘We present a scalable, reproducible and economic process for the fabrication of diamond and diamond-graphene hybrid films using paraffin wax as a seeding source for diamond. The films were characterized using Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Raman spectra show the characteristic band of diamond at 1332 cm-1 and the D, G, and 2D bands of graphene at 1360, 1582 and 2709 cm-1, respectively. Electron microscopy confirms the microcrystalline nature of the diamond films with crystal size in the range of 0.5 μm to 1.0 μm, and the hybrid film consists of microcrystalline diamond attached to thin, semi-transparent graphene flakes. The graphene-diamond hybrid films exhibit a turn-on field of about 3.6 V/μm with a prolonged current stability of at least 135 h.