The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe-22Mn-0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis.The stee...The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe-22Mn-0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis.The steel showed high susceptibility to hydrogen embrittlement,which led to 62.9%and 74.2%reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen,respectively.The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents.The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure,stacking fault probability,and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques.The results reveal that the addition of hydrogen promotes planar dislocation structures,earlier nucleation of stacking faults,and deformation twinning within those grains which have tensile axis orientations close to<111>//rolling direction and<112>//rolling direction.The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.展开更多
Fatigue crack growth(FCG)tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures,resulting in different austenite(γ)to fe rrite(α)phase fractions and differentγ(meta-)stabilit...Fatigue crack growth(FCG)tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures,resulting in different austenite(γ)to fe rrite(α)phase fractions and differentγ(meta-)stabilities.Novel in-situ hydrogen plasma charging was combined with in-situ cyclic loading in an environmental scanning electron microscope(ESEM).The in-situ hydrogen plasma cha rging increased the fatigue crack growth rate(FCGR)by up to two times in comparison with the reference tests in vacuum.Fractographic investigations showed a brittle-like crack growth or boundary cracking manner in the hydrogen environment while a ductile transgranular manner in vacuum.For both materials,the plastic deformation zone showed a reduced size along the hydrogen-influenced fracture path in comparison with that in vacuum.The difference in the hydrogen-assisted FCG of the medium-Mn steel with different microstructures was explained in terms of phase fraction,phase stability,yielding strength and hydrogen distribution.This refined study can help to understand the FCG mechanism without or with hydrogen under in-situ hydrogen charging conditions and can provide some insights from the applications point of view.展开更多
Hydrogen embrittlement(HE)poses a significant challenge for the development of high-strength metallic materials.However,explanations for the observed HE phenomena are still under debate.To shed light on this issue,her...Hydrogen embrittlement(HE)poses a significant challenge for the development of high-strength metallic materials.However,explanations for the observed HE phenomena are still under debate.To shed light on this issue,here we investigated the hydrogen-defect interaction by comparing the dislocation structure evolution after hydrogen adsorption and desorption in a Fe-28Mn-0.3C(wt%)twinning-induced plasticity steel with an austenitic structure using in situ electron channeling contrast imaging.The results indicate that hydrogen can strongly affect dislocation activities.In detail,hydrogen can promote the formation of stacking faults with a long dissociation distance.Besides,dislocation movements are frequently observed during hydrogen desorption.The required resolved shear stress is considered to be the residual stresses rendered by hydrogen segregation.Furthermore,the microstructural heterogeneity could lead to the discrepancy of dislocation activities even within the same materials.展开更多
文摘The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe-22Mn-0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis.The steel showed high susceptibility to hydrogen embrittlement,which led to 62.9%and 74.2%reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen,respectively.The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents.The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure,stacking fault probability,and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques.The results reveal that the addition of hydrogen promotes planar dislocation structures,earlier nucleation of stacking faults,and deformation twinning within those grains which have tensile axis orientations close to<111>//rolling direction and<112>//rolling direction.The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.
基金financially supported by the Department of Mechanical and Industrial Engineering(MTP),Norwegian University of Science and Technology(NTNU)the financial support of the Deutsche Forschungsgemeinschaft(DFG)within the Collaborative Research Center(SFB)761“Steel-ab initio:Quantum mechanics guided design of new Fe-based materials”。
文摘Fatigue crack growth(FCG)tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures,resulting in different austenite(γ)to fe rrite(α)phase fractions and differentγ(meta-)stabilities.Novel in-situ hydrogen plasma charging was combined with in-situ cyclic loading in an environmental scanning electron microscope(ESEM).The in-situ hydrogen plasma cha rging increased the fatigue crack growth rate(FCGR)by up to two times in comparison with the reference tests in vacuum.Fractographic investigations showed a brittle-like crack growth or boundary cracking manner in the hydrogen environment while a ductile transgranular manner in vacuum.For both materials,the plastic deformation zone showed a reduced size along the hydrogen-influenced fracture path in comparison with that in vacuum.The difference in the hydrogen-assisted FCG of the medium-Mn steel with different microstructures was explained in terms of phase fraction,phase stability,yielding strength and hydrogen distribution.This refined study can help to understand the FCG mechanism without or with hydrogen under in-situ hydrogen charging conditions and can provide some insights from the applications point of view.
基金This work was financially supported by the National Natural Science Foundation of China(No.52101022)the Shaanxi Province Natural Science Foundation(No.2021JQ-080).
文摘Hydrogen embrittlement(HE)poses a significant challenge for the development of high-strength metallic materials.However,explanations for the observed HE phenomena are still under debate.To shed light on this issue,here we investigated the hydrogen-defect interaction by comparing the dislocation structure evolution after hydrogen adsorption and desorption in a Fe-28Mn-0.3C(wt%)twinning-induced plasticity steel with an austenitic structure using in situ electron channeling contrast imaging.The results indicate that hydrogen can strongly affect dislocation activities.In detail,hydrogen can promote the formation of stacking faults with a long dissociation distance.Besides,dislocation movements are frequently observed during hydrogen desorption.The required resolved shear stress is considered to be the residual stresses rendered by hydrogen segregation.Furthermore,the microstructural heterogeneity could lead to the discrepancy of dislocation activities even within the same materials.