期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Research on the Relationship between Density of States and Conducting Properties of Single-walled Carbon Nanotubes 被引量:1
1
作者 ZhenhuaZHANG JingcuiPENG +1 位作者 XiaohuaCHEN JianxiongWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期110-112,共3页
The analytical expression of the electronic density of states (DOS) for single-walled carbon nanotubes (SWNTs) has been derived on the basis of graphene approximation of the energy E(k) near the Fermi level EF. The di... The analytical expression of the electronic density of states (DOS) for single-walled carbon nanotubes (SWNTs) has been derived on the basis of graphene approximation of the energy E(k) near the Fermi level EF. The distinctive properties of the DOS, the normalized differential conductivity and the current us bias for SWNTs are deduced and analyzed theoretically. The singularities in the DOS (or in the normalized differential conductivity) predict that the jump structure of current (or conductance)-bias of SWNTs exists. All conclusions from the theoretical analysis are in well agreement with the experimental results of SWNT's electronic structure and electronic transport. In other words, the simple theoretical model in this paper can be applied to understand a range of spectroscopic and other measurement data related to the DOS of SWNTs. 展开更多
关键词 Single-walled carbon nanotubes Graphene approximation of energy electronic density of states Normalized differential conductivity
下载PDF
GGA+U study of the electronic energy bands and state density of the wurtzite In_(1-x)Ga_xN 被引量:1
2
作者 王伟华 赵国忠 梁希侠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期58-64,共7页
The electronic band structures, densities of states (DOSs), and projected densities of states (PDOSs) of the wurtzite In1-xGaxN with x=0, 0.0625, 0.125 are studied using the generalized-gradient approximation (GG... The electronic band structures, densities of states (DOSs), and projected densities of states (PDOSs) of the wurtzite In1-xGaxN with x=0, 0.0625, 0.125 are studied using the generalized-gradient approximation (GGA) and GGA+U in density functional theory. Our calculations suggest that in the case of wurtzite InN it is important to apply an on-site Hubbard correction to both the d states of indium and the p states of nitrogen in order to recover the correct energy level symmetry and obtain a reliable description of the InN band structure. The method is used to study the electronic properties of the wurtzite In1-xGaxN. The conduction band minimum (CBM) energy increases, while the valence band maximum (VBM) energy decreases with the increase of the gallium concentration. The effect leads to broadening the band gap (BG) and the valence band width (VBW). Furthermore, the compressive strain in the crystal can cause the BG and the VBW to increase with the increase of gallium concentrations. 展开更多
关键词 GGA+U electronic structures projected density of states In1-xGaxN
下载PDF
First-principles calculations of structural and electronic properties of Tl_xGa_(1-x)As alloys
3
作者 G. Bilgec akyüz A. Y. Tunali +1 位作者 S. E. Gulebaglan N. B. Yurdasan 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第2期377-383,共7页
The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation.... The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys. 展开更多
关键词 methods of electronic structure calculations electron density of states and band structure of crys-talline solids electronic structure of disordered solid
下载PDF
Structural,electronic and elastic properties of YCu from first principles
4
作者 G.Ugur M.ivi +2 位作者 S.Ugur F.Soyalp R.Ellialt1oglu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第4期661-663,共3页
The structural, electronic and elastic properties of YCu compound in the B2 (CsCl) phase were investigated using the density functional theory (DFT) within the generalized gradient approximation (GGA). The elect... The structural, electronic and elastic properties of YCu compound in the B2 (CsCl) phase were investigated using the density functional theory (DFT) within the generalized gradient approximation (GGA). The electronic density of states (DOS) obtained in this way accorded weU with the results of a recent study utilizing the full-potential linearized augmented plane wave (FLAPW) method. We also found that the density of d-states at the Fermi energy was low. The calculated equilibrium properties such as lattice constant, bulk modulus and its first derivative, and the elastic constants were in good agreement with experimental and theoretical results. 展开更多
关键词 YCu electronic band structure density of states elastic constants bulk modulus ab initio rare earths
下载PDF
Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
5
作者 Mohsen Yarmohammadi 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期375-381,共7页
The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacit... The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacity(EHC) for four hydrogenated structures, including monolayer chair-like, table-like, bilayer AA- and finally AB-stacked graphene. After hydrogenation, monolayer graphene and bilayer graphene are behave as semiconducting systems owning a wide direct band gap and this means that all orbitals have several states around the Fermi level. The energy gap in DOS and Schottky anomaly in EHC curves of these structures are compared together illustrating the maximum and minimum band gaps are appear for monolayer chair-like and bilayer AA-stacked graphane, respectively. In spite of these, our findings show that the maximum and minimum values of Schottky anomaly appear for hydrogenated bilayer AA-stacked and monolayer table-like configurations, respectively. 展开更多
关键词 hydrogenated monolayer and bilayer graphene Harrison model electronic heat capacity density of states Green's function
下载PDF
Nature of the band gap of halide perovskites ABX_3(A=CH_3NH_3,Cs;B=Sn,Pb;X=Cl,Br,I):First-principles calculations 被引量:3
6
作者 袁野 徐闰 +3 位作者 徐海涛 洪峰 徐飞 王林军 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期358-362,共5页
The electronic structures of cubic structure of ABX3(A=CH3NH3, Cs; B=Sn, Pb; X=Cl, Br, I) are analyzed by den- sity functional theory using the Perdew-Burke-Ernzerhof exchange-correlation functional and using the He... The electronic structures of cubic structure of ABX3(A=CH3NH3, Cs; B=Sn, Pb; X=Cl, Br, I) are analyzed by den- sity functional theory using the Perdew-Burke-Ernzerhof exchange-correlation functional and using the Heyd-Scuseria- Ernzerhof hybrid functional. The valence band maximum (VBM) is found to be made up by an antibonding hybridization of B s and X p states, whereas bands made up by the π antibonding of B p and X p states dominates the conduction band minimum (CBM). The changes of VBM, CBM, and band gap with ion B and X are then systematically summarized. The natural band offsets of ABX3 are partly given. We also found for all the ABX3 perovskite materials in this study, the bandgap increases with an increasing lattice parameter. This phenomenon has good consistency with the experimental results. 展开更多
关键词 first-principles theory electron density of states band structure of crystalline solids organicinorganic hybrid nanostructures
下载PDF
First-principles study of orbital ordering in cubic fluoride KCrF_3
7
作者 明星 熊良斌 +3 位作者 徐火希 杜菲 王春忠 陈岗 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期514-517,共4页
Comprehensive first-principles calculations are performed to provide insight into the intriguing physical properties of the ternary cubic fluoride KCrF3. The electronic structures exhibit a prominent dependence on the... Comprehensive first-principles calculations are performed to provide insight into the intriguing physical properties of the ternary cubic fluoride KCrF3. The electronic structures exhibit a prominent dependence on the effective local Coulomb interaction parameter Ueff. The ground state of the cubic phase is a ferromagnetic (FM) half-metal with Ueff equal to 0, 2, and 4 eV, whereas the insulating A-type antiferromagnetic (A-AFM) state with concomitant homogeneous orbital ordering is more robust than the FM state for Ueff exceeding 4 eV. We propose that the origin of the orbital ordering is purely electronic when the cooperative Jahn-Teller distortions are absent in cubic KCrF3. 展开更多
关键词 electron density of states band structure orbital ordering first-principles calculations
下载PDF
First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
8
作者 史佳 王蕾 顾强 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期419-425,共7页
Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a sing... Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a single defect in ZnO still has limitations for photocatalytic activity.Meanwhile,the influence of co-existence of various defects in ZnO still lacks sufficient studies.Therefore,we investigate the photocatalytic properties of ZnOx C0.0625(x=0.9375,0.875,0.8125),confirming that the co-effect of various defects has a greater enhancement for photocatalytic activity driven by visible-light than the single defect in ZnO.To clarify the underlying mechanism of co-existence of various defects in ZnO,we perform systematically the electronic properties calculations using density functional theory.It is found that the coeffect of C-doping and Vo in ZnO can achieve a more controllable band gap than doping solely in ZnO.Moreover,the impact of the effective masses of ZnO_(x)C_(0.0625)(x=0.9375,0.875,0.8125)is also taken into account.In comparison with heavy Vo concentrations,the light Vo concentration(x=0.875)as the optimal component together with C-doping in ZnO,can significantly improve the visible-light absorption and benefit photocatalytic activity. 展开更多
关键词 first-principles theory electron density of states and band structure of crystalline solids Ⅲ-ⅤandⅡ-Ⅵsemiconductors
下载PDF
Study of magnetic and optical properties of Zn1-xTMxTe(TM = Mn,Fe,Co,Ni) diluted magnetic semiconductors:First principle approach
9
作者 Q Mahmood M Hassan M A Faridi 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期452-460,共9页
We present structural,magnetic and optical characteristics of Zn_(1-x)TM_xTe(TM = Mn,Fe,Co,Ni and x = 6.25%),calculated through Wien2 k code,by using full potential linearized augmented plane wave(FP-LAPW) techn... We present structural,magnetic and optical characteristics of Zn_(1-x)TM_xTe(TM = Mn,Fe,Co,Ni and x = 6.25%),calculated through Wien2 k code,by using full potential linearized augmented plane wave(FP-LAPW) technique.The optimization of the crystal structures have been done to compare the ferromagnetic(FM) and antiferromagnetic(AFM) ground state energies,to elucidate the ferromagnetic phase stability,which further has been verified through the formation and cohesive energies.Moreover,the estimated Curie temperatures T_c have demonstrated above room temperature ferromagnetism(RTFM) in Zn_(1-x)TM_xTe(TM =Mn,Fe,Co,Ni and x= 6.25%).The calculated electronic properties have depicted that Mn- and Co-doped ZnTe behave as ferromagnetic semiconductors,while half-metallic ferromagnetic behaviors are observed in Fe- and Ni-doped ZnTe.The presence of ferromagnetism is also demonstrated to be due to both the p-d and s-d hybridizations between the host lattice cations and TM impurities.The calculated band gaps and static real dielectric constants have been observed to vary according to Penn's model.The evaluated band gaps lie in near visible and ultraviolet regions,which make these materials suitable for various important device applications in optoelectronic and spintronic. 展开更多
关键词 magnetic semiconductors density functional theory optical and dielectric properties electron density of states and band structure of crystalline solids
下载PDF
Prediction of chemical short-range order in high-/medium-entropy alloys
10
作者 Pei-Yu Cao Jing Wang +3 位作者 Ping Jiang Yun-Jiang Wang Fu-Ping Yuan Xiao-Lei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期115-123,共9页
Chemical short-range orders(CSROs),as the built-in sub-nanoscale entities in a high-/medium-entropy alloy(H/MEA),have aroused an ever-increasing interest.With multi-principal elements in an H/MEA to form a complex con... Chemical short-range orders(CSROs),as the built-in sub-nanoscale entities in a high-/medium-entropy alloy(H/MEA),have aroused an ever-increasing interest.With multi-principal elements in an H/MEA to form a complex concentrated solution,a variety of sub-systems of species exist to induce the metastable ordered compounds as candidates for ultimate CSROs.The issues remain pending on the origin of CSROs as to how to judge if CSRO will form in an H/MEA and particularly,what kind of CSROs would be stably produced if there were multiple possibilities.Here,the first-principles method,along with the proposed local formation energy calculation in allusion to the atomic-scale chemical heterogeneities,is used to predict the CSRO formation based on the mechanical stability,thermodynamic formation energy,and electronic characteristics.The simulations are detailed in an equiatomic ternary VCoNi MEA with three kinds of potential compounds,i.e.,L1_(1),L1_(2),and B2,in the face-centered cubic matrix.It turns out that L1_(1)is stable but hard to grow up so as to become the final CSRO.L1_(1)is further predicted as CSROs in CrCoNi,but unable to form in FeCoNi and CrMnFeCoNi alloys.These predictions are consistent with the experimental observations.Our findings shed light on understanding the formation of CSROs.This method is applicable to other H/MEAs to design and tailor CSROs by tuning chemical species/contents and thermal processing for high performance. 展开更多
关键词 Short-range order High-entropy alloy Microstructure First-principles calculation Gibbs free energy Local electronic density of states
原文传递
Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
11
作者 罗伟霞 刘雪璐 +5 位作者 罗向东 杨峰 张申金 彭钦军 许祖彦 谭平恒 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期100-105,共6页
Photoreflectance(PR)spectroscopy is a powerful and non-destructive experimental technique to explore interband transitions of semiconductors.In most PR systems,the photon energy of the pumping beam is usually chosen t... Photoreflectance(PR)spectroscopy is a powerful and non-destructive experimental technique to explore interband transitions of semiconductors.In most PR systems,the photon energy of the pumping beam is usually chosen to be higher than the bandgap energy of the sample.To the best of our knowledge,the highest energy of pumping laser in reported PR systems is 5.08 eV(244 nm),not yet in the vacuum ultraviolet(VUV)region.In this work,we report the design and construction of a PR system pumped by VUV laser of 7.0 eV(177.3 nm).At the same time,dual-modulated technique is applied and a dual channel lock-in-amplifier is integrated into the system for efficient PR measurement.The system’s performance is verified by the PR spectroscopy measurement of well-studied semiconductors,which testifies its ability to probe critical-point energies of the electronic band in semiconductors from ultraviolet to near-infrared spectral region. 展开更多
关键词 photoreflectance spectroscopy vacuum ultraviolet laser electronic band structure critical points of electron density of states
下载PDF
Anion-site-modulated thermoelectric properties in Ge2Sb2Te5-based compounds
12
作者 Ping Hu Tian-Ran Wei +5 位作者 Shao-Ji Huang Xu-Gui Xia Peng-Fei Qiu Jiong Yang Li-Dong Chen Xun Shi 《Rare Metals》 SCIE EI CAS CSCD 2020年第10期1127-1133,共7页
The amalgamation of multi-subjects often elicits novel materials,new concepts and unexpected applications.Recently,Ge2 Sb2 Te5,as the most established phasechange material,has been found to exhibit decent thermoelectr... The amalgamation of multi-subjects often elicits novel materials,new concepts and unexpected applications.Recently,Ge2 Sb2 Te5,as the most established phasechange material,has been found to exhibit decent thermoelectric performance in its stable,hexagonal phase.The challenge for higher figure of merit(zT) values lies in reducing the hole carrier concentration and enhancing the Seebeck coefficient,which,however,can be hardly realized by conventional doping.Here in this work,we report that the electrical properties of Ge2 Sb2 Te5 can be readily optimized by anion-site modulation.Specifically,Se/S substitution for Te induces stronger and more ionic bonding,lowering the hole density.Furthermore,an increase in electronic density of state is introduced by Se substitution,contributing to a large increase in Seebeck coefficient.Combined with the reduced thermal conductivity,maximum zT values above 0.7 at 800 K have been achieved in Se/S-alloyed materials,which is ~30% higher than that in the pristine Ge2Sb2 Te5. 展开更多
关键词 THERMOELECTRIC Ge2Sb2Te5 Anion-site modulation Chemical bond electronic density of states
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部