During initial studies of ECRH in the HL-1M tokamak, non-standard central MHD activities,such as saturated sawtooth, partially saturated sawtooth, double sawtooth, and the strong m = 1 bursts have been observed while ...During initial studies of ECRH in the HL-1M tokamak, non-standard central MHD activities,such as saturated sawtooth, partially saturated sawtooth, double sawtooth, and the strong m = 1 bursts have been observed while changing the heating location, the ECRH power, the plasma density. Complete suppression of sawtooth is achieved for the duration of the ECRH, when the heating power is applied on the high-field side of low-density plasma, and exceeds a threshold value of power. The m = 1 bursts riding on the ramp phase of sawtooth can only be excited when the ECRH location is near the q = 1 surface on the high field side. The conditions under which the various relaxation activities are produced or suppressed are described. Experimental results imply that the energetic electrons generated during ECRH are responsible for the modification/or stabilization/or excitation of the instability. Near the q = 1 surface, the passing electrons play the role of reducing the shear and tending to stabilize the sawtooth activity, while the barely-trapped electrons play the role of enhancing or driving an internal kink instability.展开更多
Ball Lightning (BL) is a “plasma bubble” that has very remarkable properties. Its membrane contains a higher density of charged particles than the ambient medium. They are held together by mutually attracting surfac...Ball Lightning (BL) is a “plasma bubble” that has very remarkable properties. Its membrane contains a higher density of charged particles than the ambient medium. They are held together by mutually attracting surface charges, generated by collective oscillations of all unbound electrons inside the membrane. Energy losses by collisions and emission of radiation, as well as losses of charged particles by recombination, are compensated by extracting other ones from atmospheric air. Since that occurs in a special rhythmic way, this leads to “parametric amplification” of the oscillations of all unbound electrons in the plasma membrane. Moreover, BL is attracted by higher concentrations of charged particles in atmospheric air. Too much of them leads to explosion and too few to extinction of visible BL. Since the electric charge of BL is oscillating, it is also attracted by metals, water and glass. It can then heat, melt and vaporize these materials without stored energy. BL is even able to pass through window panes in 3 different ways, but that can also be explained.展开更多
Differences of the time periods in two independent quantum systems are examined on a semiclassical level. The systems are the electron in the hydrogen atom and a free-electron particle moving in a one-dimensional pote...Differences of the time periods in two independent quantum systems are examined on a semiclassical level. The systems are the electron in the hydrogen atom and a free-electron particle moving in a one-dimensional potential box, respectively. It is demonstrated that in both systems the relativistic correction to the time interval can be expressed as a multiple of the same quantum of time. The size of the quantum is proportional to the ratio of the Planck’s constant and the rest energy of the electron particle.展开更多
The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission...The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission(SASE)XFEL is capable of generating ultra-short pulses with chaotic spectra.In general,a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode,thereby opening a new door for cutting-edge scientific research.With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH,European-XFEL,LCLS-II,and SHINE,practical cavity-based XFEL operations are becoming increasingly achievable.In this study,megahertz cavity enhanced X-ray generation(MING)is proposed based on China’s first hard XFEL facility-SHINE,which we refer to as MING@SHINE.展开更多
In this paper, 0.15-μm gate-length In0.52Al0.48As/In0.53Ga0.47As InP-based high electron mobility transistors (HEMTs) each with a gate-width of 2×50 μm are designed and fabricated. Their excellent DC and RF c...In this paper, 0.15-μm gate-length In0.52Al0.48As/In0.53Ga0.47As InP-based high electron mobility transistors (HEMTs) each with a gate-width of 2×50 μm are designed and fabricated. Their excellent DC and RF characterizations are demonstrated. Their full channel currents and extrinsic maximum transconductance (gm,max) values are measured to be 681 mA/mm and 952 mS/mm, respectively. The off-state gate-to-drain breakdown voltage (BVGD) defined at a gate current of-1 mA/mm is 2.85 V. Additionally, a current-gain cut-off frequency (fT) of 164 GHz and a maximum oscillation frequency (fmax) of 390 GHz are successfully obtained; moreover, the fmax of our device is one of the highest values in the reported 0.15-μm gate-length lattice-matched InP-based HEMTs operating in a millimeter wave frequency range. The high gm,max, BVGD, fmax, and channel current collectively make this device a good candidate for high frequency power applications.展开更多
The storage ring equipped with an electron cooler is an ideal platform for dielectronic recombination (DR) experiments. In order to fulfill the requirement of DR measurements at the main Cooler Storage Ring, a detun...The storage ring equipped with an electron cooler is an ideal platform for dielectronic recombination (DR) experiments. In order to fulfill the requirement of DR measurements at the main Cooler Storage Ring, a detuning system for the precision control of the relative energy between the ion beam and the electron beam has been installed on the electron cooler device. The test run using 7.0 MeV/u C6+ beam was performed with recording the Schottky spectra and the ion beam currents. The influence of pulse heights and widths of the detuning voltage on the ion beam was analyzed. For the small pulse height, the experimental results from the Schottky spectra were in good agreement with the theoretical results. The frequency shift in the Schottky spectra was significantly reduced for the short pulse width. For the large pulse height, an oscillation phenomenon was observed and some effective ways to reduce the oscillation were pointed out. The detailed description of the phenomenon and the theoretical model based on the plasma oscillation was discussed in this paper. The overall results show that the new detuning system works properly, and could fulfill the requirements of future DR experiment.展开更多
FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm...FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm. In this paper, we numerically study the output characteristics of the middle-infrared oscillator with accurate cavity length detuning. Emphasis is put on the temporal structure of the micropulse and the corresponding spectral bandwidth.Taking the radiation wavelengths of 50 μm and 5 μm as examples, we show that the output pulse duration can be tuned in the range of 1–6 ps with corresponding bandwidth of 13%–0.2% by adjusting the cavity length detuning.In addition, a special discussion on the comb structure is presented, and it is indicated that the comb structure may arise in the output optical pulse when the normalized slippage length is much smaller than unity. This work has reference value for the operation of FELiChEM and other FEL oscillators.展开更多
A flash-lamp-pumped Nd:YAG regenerative amplifier has been developed at 1.06 μm, seeded with 10- ps pulses from a diode-end-pumped and mode-locked Nd:YAG oscillator with homemade semiconductor saturable absorber mi...A flash-lamp-pumped Nd:YAG regenerative amplifier has been developed at 1.06 μm, seeded with 10- ps pulses from a diode-end-pumped and mode-locked Nd:YAG oscillator with homemade semiconductor saturable absorber mirror (SESAM). The pulse energy was amplified to 2 mJ by the regenerative amplifier at 10-Hz repetition rate. In two-stages amplifier the regenerative amplified pulse energy was amplified to 100 m J, and 35-mJ double frequency at 532 nm was obtained by extra-cavity double frequency with a KTP crystal.展开更多
An 8×10 Gb/s optical time-division-multiplexing (OTDM) system was demonstrated with an electroab-sorption modulator (EAM) based short pulse generator followed by a two-stage nonlinear compression scheme which gen...An 8×10 Gb/s optical time-division-multiplexing (OTDM) system was demonstrated with an electroab-sorption modulator (EAM) based short pulse generator followed by a two-stage nonlinear compression scheme which generated stable 10-GHz, 2-ps full-width at half-maximum (FWHM) pulse train, an optoelectronic oscillator (OEO) that extracted 10-GHz clock with a timing jitter of 300 fs from 80-Gb/s OTDM signal and a self cascaded EAM which produced a switching window of about 10 ps. A back-to-back error free demultiplexing experiment with a power penalty of 3.25 dB was carried out to verify the system performance.展开更多
We demonstrate the theory of chromatic dispersion (CD)-induced constellation rotation (CR) in a radio-over-fiber (ROF) link and a method for compensation. We also propose a 60 GHz full-duplex ROF system with vec...We demonstrate the theory of chromatic dispersion (CD)-induced constellation rotation (CR) in a radio-over-fiber (ROF) link and a method for compensation. We also propose a 60 GHz full-duplex ROF system with vector signal transmission including no CD effect. The evaluation of 5 Gb/s 16 quadrature amplitude modulation signal transmission shows that the CD-induced CR can be entirely overcome due to the proposed method which is simply implemented through an optical phase shifter. The proposed ROF schedule is not only applicable for V-band (57-64 GHz) but also fits for W-band (75-110 GHz), or any other bandwidth.展开更多
We demonstrate a new scheme for generation of optical frequency comb (OFC) based on cascade modulators, 23 comb lines within 0.5 dB spectral power variation are obtained. An optical finite impulse response (FIR) f...We demonstrate a new scheme for generation of optical frequency comb (OFC) based on cascade modulators, 23 comb lines within 0.5 dB spectral power variation are obtained. An optical finite impulse response (FIR) filter is introduced for suppression of amplified spontaneous emission noise. It is shown that carrier-to-noise-ratio of the OFC generated by this scheme can be as high as 38.8 dB with 12 dB improvement by using a 16-tap FIR filter, and the error vector magnitude performances of loaded Nyquist-16 quadrature amplitude modulation signal is imDroved from 14.20/% to 7 .44%.展开更多
Hundreds picosecond strong short-wavelength pulses have been generate by a backward Raman oscillator amplifier pumped with a 10-J KrF laser from Heaven-1 MOPA system. Not only high power but also high energy laser pul...Hundreds picosecond strong short-wavelength pulses have been generate by a backward Raman oscillator amplifier pumped with a 10-J KrF laser from Heaven-1 MOPA system. Not only high power but also high energy laser pulses have been obtained with an energy conversion efficiency up to 17%. 640-picosecond pulse duration was observed in our experiments by a 1.5-GHz-bandwidth oscilloscope corresponding to 34 times of pulse compression rate.展开更多
This paper investigates a high power all fiber ultrashort pulse laser system. This system consists of a mode-ocking laser oscillator, a multi-stage amplifier, a pulse selector, and a paired grating pulse compressor. W...This paper investigates a high power all fiber ultrashort pulse laser system. This system consists of a mode-ocking laser oscillator, a multi-stage amplifier, a pulse selector, and a paired grating pulse compressor. With pulse energy of 12 μJ at repetition rate of 30 kHz, the laser at center wavelength of 1.05 μm was obtained. Pulse width of 525 fs was achieved after the grating pair compressor.展开更多
We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band. At the receiver, a directly modulate...We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band. At the receiver, a directly modulated laser (DML) is used to realize E/O conversion. The received 85 GHz wireless millimeter-wave (mm-wave) signal is first down-converted into a 10 GHz electrical intermediate-frequency (IF) signal to overcome the insufficient band- width of the subsequent DML. Then, two cascaded electrical amplifiers (EAs) are employed to boost the elec- trical IF signal before it is used to drive a DML. By using this scheme, we transmit a 10 Gb/s 16 quadrature amplitude modulation (16QAM) signal over a 10 m wireless link, and then deliver it over a 2 km single-mode fiber-28 (SMF-28) wire link with a bit error ratio (BER) that is less than the hard-decision forward error correction threshold of 3.8× 10^-3. Our experimental results show that the DML is good device to be used for the E/O conversion of a 16OAM signal.展开更多
文摘During initial studies of ECRH in the HL-1M tokamak, non-standard central MHD activities,such as saturated sawtooth, partially saturated sawtooth, double sawtooth, and the strong m = 1 bursts have been observed while changing the heating location, the ECRH power, the plasma density. Complete suppression of sawtooth is achieved for the duration of the ECRH, when the heating power is applied on the high-field side of low-density plasma, and exceeds a threshold value of power. The m = 1 bursts riding on the ramp phase of sawtooth can only be excited when the ECRH location is near the q = 1 surface on the high field side. The conditions under which the various relaxation activities are produced or suppressed are described. Experimental results imply that the energetic electrons generated during ECRH are responsible for the modification/or stabilization/or excitation of the instability. Near the q = 1 surface, the passing electrons play the role of reducing the shear and tending to stabilize the sawtooth activity, while the barely-trapped electrons play the role of enhancing or driving an internal kink instability.
文摘Ball Lightning (BL) is a “plasma bubble” that has very remarkable properties. Its membrane contains a higher density of charged particles than the ambient medium. They are held together by mutually attracting surface charges, generated by collective oscillations of all unbound electrons inside the membrane. Energy losses by collisions and emission of radiation, as well as losses of charged particles by recombination, are compensated by extracting other ones from atmospheric air. Since that occurs in a special rhythmic way, this leads to “parametric amplification” of the oscillations of all unbound electrons in the plasma membrane. Moreover, BL is attracted by higher concentrations of charged particles in atmospheric air. Too much of them leads to explosion and too few to extinction of visible BL. Since the electric charge of BL is oscillating, it is also attracted by metals, water and glass. It can then heat, melt and vaporize these materials without stored energy. BL is even able to pass through window panes in 3 different ways, but that can also be explained.
文摘Differences of the time periods in two independent quantum systems are examined on a semiclassical level. The systems are the electron in the hydrogen atom and a free-electron particle moving in a one-dimensional potential box, respectively. It is demonstrated that in both systems the relativistic correction to the time interval can be expressed as a multiple of the same quantum of time. The size of the quantum is proportional to the ratio of the Planck’s constant and the rest energy of the electron particle.
基金supported by the CAS Project for Young Scientists in Basic Research(No.YSBR-042)the National Natural Science Foundation of China(Nos.12125508,11935020)+1 种基金Program of Shanghai Academic/Technology Research Leader(No.21XD1404100)Shanghai Pilot Program for Basic Research–Chinese Academy of Science,Shanghai Branch(No.JCYJSHFY-2021-010).
文摘The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission(SASE)XFEL is capable of generating ultra-short pulses with chaotic spectra.In general,a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode,thereby opening a new door for cutting-edge scientific research.With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH,European-XFEL,LCLS-II,and SHINE,practical cavity-based XFEL operations are becoming increasingly achievable.In this study,megahertz cavity enhanced X-ray generation(MING)is proposed based on China’s first hard XFEL facility-SHINE,which we refer to as MING@SHINE.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB327502 and 2010CB327505)the Advance Research Project(Grant No.5130803XXXX)
文摘In this paper, 0.15-μm gate-length In0.52Al0.48As/In0.53Ga0.47As InP-based high electron mobility transistors (HEMTs) each with a gate-width of 2×50 μm are designed and fabricated. Their excellent DC and RF characterizations are demonstrated. Their full channel currents and extrinsic maximum transconductance (gm,max) values are measured to be 681 mA/mm and 952 mS/mm, respectively. The off-state gate-to-drain breakdown voltage (BVGD) defined at a gate current of-1 mA/mm is 2.85 V. Additionally, a current-gain cut-off frequency (fT) of 164 GHz and a maximum oscillation frequency (fmax) of 390 GHz are successfully obtained; moreover, the fmax of our device is one of the highest values in the reported 0.15-μm gate-length lattice-matched InP-based HEMTs operating in a millimeter wave frequency range. The high gm,max, BVGD, fmax, and channel current collectively make this device a good candidate for high frequency power applications.
文摘The storage ring equipped with an electron cooler is an ideal platform for dielectronic recombination (DR) experiments. In order to fulfill the requirement of DR measurements at the main Cooler Storage Ring, a detuning system for the precision control of the relative energy between the ion beam and the electron beam has been installed on the electron cooler device. The test run using 7.0 MeV/u C6+ beam was performed with recording the Schottky spectra and the ion beam currents. The influence of pulse heights and widths of the detuning voltage on the ion beam was analyzed. For the small pulse height, the experimental results from the Schottky spectra were in good agreement with the theoretical results. The frequency shift in the Schottky spectra was significantly reduced for the short pulse width. For the large pulse height, an oscillation phenomenon was observed and some effective ways to reduce the oscillation were pointed out. The detailed description of the phenomenon and the theoretical model based on the plasma oscillation was discussed in this paper. The overall results show that the new detuning system works properly, and could fulfill the requirements of future DR experiment.
基金Supported by National Natural Science Foundation of China(21327901,11205156)
文摘FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm. In this paper, we numerically study the output characteristics of the middle-infrared oscillator with accurate cavity length detuning. Emphasis is put on the temporal structure of the micropulse and the corresponding spectral bandwidth.Taking the radiation wavelengths of 50 μm and 5 μm as examples, we show that the output pulse duration can be tuned in the range of 1–6 ps with corresponding bandwidth of 13%–0.2% by adjusting the cavity length detuning.In addition, a special discussion on the comb structure is presented, and it is indicated that the comb structure may arise in the output optical pulse when the normalized slippage length is much smaller than unity. This work has reference value for the operation of FELiChEM and other FEL oscillators.
基金This work was supported by Ministry of Science and Technology of China (No. JG-2000-05) the Natural Science Foundation of Beijing (No. 3021001)the foundation of Liaochens University.
文摘A flash-lamp-pumped Nd:YAG regenerative amplifier has been developed at 1.06 μm, seeded with 10- ps pulses from a diode-end-pumped and mode-locked Nd:YAG oscillator with homemade semiconductor saturable absorber mirror (SESAM). The pulse energy was amplified to 2 mJ by the regenerative amplifier at 10-Hz repetition rate. In two-stages amplifier the regenerative amplified pulse energy was amplified to 100 m J, and 35-mJ double frequency at 532 nm was obtained by extra-cavity double frequency with a KTP crystal.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 60444008904010247 and 60177019.
文摘An 8×10 Gb/s optical time-division-multiplexing (OTDM) system was demonstrated with an electroab-sorption modulator (EAM) based short pulse generator followed by a two-stage nonlinear compression scheme which generated stable 10-GHz, 2-ps full-width at half-maximum (FWHM) pulse train, an optoelectronic oscillator (OEO) that extracted 10-GHz clock with a timing jitter of 300 fs from 80-Gb/s OTDM signal and a self cascaded EAM which produced a switching window of about 10 ps. A back-to-back error free demultiplexing experiment with a power penalty of 3.25 dB was carried out to verify the system performance.
基金supported by the National "973" Project of China(Nos.2010CB328202,2010CB328204,and 2012CB315604)the National Natural Science Foundation of China(Nos.61271191 and 61001124)+3 种基金the National "863" Project of China(No.2012AA011302)the Program for New Century Excellent Talents in University(No.NCET-12-0793)the Beijing Nova Program(No.2011065)the Fundamental Research Funds for the Central Universities
文摘We demonstrate the theory of chromatic dispersion (CD)-induced constellation rotation (CR) in a radio-over-fiber (ROF) link and a method for compensation. We also propose a 60 GHz full-duplex ROF system with vector signal transmission including no CD effect. The evaluation of 5 Gb/s 16 quadrature amplitude modulation signal transmission shows that the CD-induced CR can be entirely overcome due to the proposed method which is simply implemented through an optical phase shifter. The proposed ROF schedule is not only applicable for V-band (57-64 GHz) but also fits for W-band (75-110 GHz), or any other bandwidth.
基金supported by the National Natural Science Foundation of China(No.61205065)the National 863 Program of China(No.2013AA013401)+1 种基金the Open Fund of IPOC(BUPTNo.IPOC2013B005)
文摘We demonstrate a new scheme for generation of optical frequency comb (OFC) based on cascade modulators, 23 comb lines within 0.5 dB spectral power variation are obtained. An optical finite impulse response (FIR) filter is introduced for suppression of amplified spontaneous emission noise. It is shown that carrier-to-noise-ratio of the OFC generated by this scheme can be as high as 38.8 dB with 12 dB improvement by using a 16-tap FIR filter, and the error vector magnitude performances of loaded Nyquist-16 quadrature amplitude modulation signal is imDroved from 14.20/% to 7 .44%.
基金This work was supported by the National High Technology Research and Development Program of China (863 Program, 863-804-6, No. 2002AA846020)the China Institute of Atomic Energy.
文摘Hundreds picosecond strong short-wavelength pulses have been generate by a backward Raman oscillator amplifier pumped with a 10-J KrF laser from Heaven-1 MOPA system. Not only high power but also high energy laser pulses have been obtained with an energy conversion efficiency up to 17%. 640-picosecond pulse duration was observed in our experiments by a 1.5-GHz-bandwidth oscilloscope corresponding to 34 times of pulse compression rate.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 60537060,10390160 and 60137010.
文摘This paper investigates a high power all fiber ultrashort pulse laser system. This system consists of a mode-ocking laser oscillator, a multi-stage amplifier, a pulse selector, and a paired grating pulse compressor. With pulse energy of 12 μJ at repetition rate of 30 kHz, the laser at center wavelength of 1.05 μm was obtained. Pulse width of 525 fs was achieved after the grating pair compressor.
基金partially supported by the National Natural Science Foundation of China under Grant Nos.61377079 and 61372035
文摘We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band. At the receiver, a directly modulated laser (DML) is used to realize E/O conversion. The received 85 GHz wireless millimeter-wave (mm-wave) signal is first down-converted into a 10 GHz electrical intermediate-frequency (IF) signal to overcome the insufficient band- width of the subsequent DML. Then, two cascaded electrical amplifiers (EAs) are employed to boost the elec- trical IF signal before it is used to drive a DML. By using this scheme, we transmit a 10 Gb/s 16 quadrature amplitude modulation (16QAM) signal over a 10 m wireless link, and then deliver it over a 2 km single-mode fiber-28 (SMF-28) wire link with a bit error ratio (BER) that is less than the hard-decision forward error correction threshold of 3.8× 10^-3. Our experimental results show that the DML is good device to be used for the E/O conversion of a 16OAM signal.