The geometrization process of physics could involve, in addition to space and time in General Relativity (GR), even elementary particles. Our starting point is the formulation of an original hypothesis about particles...The geometrization process of physics could involve, in addition to space and time in General Relativity (GR), even elementary particles. Our starting point is the formulation of an original hypothesis about particles, compatible with the basic assumptions of the Standard Model (SM): a massive particle is a geometric structure of a set of elastically coupled quantum oscillators that propagates along a line of a non-massive base field (in impulse eigenstate). We show that the propagation equation of an oscillation associated with the geometric shape representing an electron propagates following Dirac’s wave equation. Thus, one gives a foundation to a geometric model of massive particles (GMP) which would explain the physical origin of the mass, spin, and the magnetic moment of the electron.展开更多
We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptib...We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.展开更多
A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclea...A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.展开更多
The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phas...The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phase separation and phase transitions were observed from the ESR spectra data. Between 350 K and 300 K, both paramagnetic resonance (PMR) and anisotropic ferromagnetic resonance (FMR) lines were observed in the ab plane and the c axis direction, suggesting a coexistence of the paramagnetic (PM) phase and the ferromagnetic (FM) phase. The magnetization measurement reveals a spin-glass-like behavior in single-crystal (Lao.8Euo.2)4/3 Sr5/3Mn2O7 below the temperature of spin freezing Tf (- 29.5 K).展开更多
This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. ...This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.展开更多
ESR saturation power point of the hair of healthy, lung cancer, esophageal cancer, as well as silicosis, tuberculosis and cardiovascular disease were detected. The results show that the positive rate is 1.69%, 85.42%,...ESR saturation power point of the hair of healthy, lung cancer, esophageal cancer, as well as silicosis, tuberculosis and cardiovascular disease were detected. The results show that the positive rate is 1.69%, 85.42%, 90.4%, 20.00%, 27.27% and 0% respectively. There is a significant difference between lung cancer, esophageal cancer and healthy persons (P<0. 001). ESR saturation power point elevates sharply after treatment of lung cancer, 71. 43% of total cases ranged from 7. 9 to 24. 0 (mW), after treatment of esophageal cancer, 71. 23% ranged from 7.9 to 19.9 (mW). All patients with cardiovascular disease were examined to be negative, i. e. , above 10. 0 (mW).展开更多
We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In prev...We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ⅰb diamond; or 13C nuclear spin bath for type-Ⅱa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time (T2 ) of about 400#8. However, in a high-purity type-Ⅱa diamond where 1℃ nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin T2 time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherenee mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.展开更多
A Fe doped rutile TiO2 single crystal is grown in an O2 atmosphere by the floating zone technique. Electron spin resonance (ESR) spectra clearly demonstrate that Fe^3+ ions are substituted for the Ti^4+ ions in th...A Fe doped rutile TiO2 single crystal is grown in an O2 atmosphere by the floating zone technique. Electron spin resonance (ESR) spectra clearly demonstrate that Fe^3+ ions are substituted for the Ti^4+ ions in the rutile TiO2 matrix. Magnetization measurements reveal that the Fe:TiO2 crystal shows paramagnetic behaviour in a temperature range from 5 K to 350 K. The Fe^3+ ions possess weak magnetic anisotropy with an easy axis along the c axis. The annealed Fe:TiO2 crystal shows spin-glass-like behaviours due to the aggregation of the ferromagnetic clusters.展开更多
With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1O...With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1OK. We consider the exciting light with right-handed circular polarization, and the calculation results show that the degree of electron spin polarization is dependent strongly on the quasi-Fermi levels of |1/2) and |- 1/2) spin conduction bands. At room temperature, the degree of electron spin polarization decreases sharply from 1 near the bottom of the conduction band, and then increases to a stable value above the quasi-Fermi level of the |- 1/2) band. The greater the quasi-Fermi level is, the higher the degree of electron spin polarization with excessive en- ergy above the quasi-Fermi level of the |- 1/2) band can be achieved. At low temperature, the degree of electron spin polarization decreases from 1 sharply near the bottom of the conduction band, and then increases with the excessive energy, and in particular, up to a maximum of i above the quasi-Fermi level of the |1/2) band.展开更多
The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and...The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density, Moreover, the relative strength of the Rashba and the Dresselhaus spin-rbit coupling fields, and thus the observed spin relaxation time anisotropy, is further tuned by the additional excitation of a 532nm continuous wave laser, demonstrating an effective spin relaxation manipulation via an optical gating method.展开更多
The present paper reviews new findings in redoxproperties of the active constituent of Chinese herbalmedicine(CHM),a kind of CHM or a compoundprescription as an antioxidant.Firstly,we have studiedtheir antioxidant and...The present paper reviews new findings in redoxproperties of the active constituent of Chinese herbalmedicine(CHM),a kind of CHM or a compoundprescription as an antioxidant.Firstly,we have studiedtheir antioxidant and prooxidant actions with electronspin resonance(ESR).The results show that the activecomponents from over 10 kinds of CHM are able toscavenge the oxygen free radicals but propyl gallate展开更多
There is evidence showing that increased levels of oxidative stress and C-reactive protein (CRP) might be associated with obesity, hypertension, atherosclerosis and other cardiovascular diseases. This study was undert...There is evidence showing that increased levels of oxidative stress and C-reactive protein (CRP) might be associated with obesity, hypertension, atherosclerosis and other cardiovascular diseases. This study was undertaken to investigate possible relationships among plasma 8-iso-prostaglandin F2α (8-iso-PG F2α: an index of oxidative stress), high-sensitivity (hs)-CRP and membrane fluidity (a reciprocal value of microviscosity) in hypertensive and normotensive men using an electron spin resonance (ESR)-method. The order parameter (S) for the spin-label agents (5-nitroxide stearate) of red blood cell (RBC) membranes in the ESR spectra was significantly higher in hypertensive men than in normotensive men, indicating that membrane fluidity was decreased in hypertensive men. Both plasma 8-iso-PG F2α and hs-CRP levels were significantly increased in hypertensive men compared with normotensive men. In addition, plasma plasma 8-iso-PG F2α levels were correlated with plasma hs-CRP levels. In contrast, plasma nitric oxide (NO)-metabolites were lower in hypertensive men than in normotensive men, and inversely correlated with plasma 8-iso-PG F2α and hs-CRP. The order parameter(S) of RBCs was correlated with plasma 8-iso-PG F2α and plasma hs-CRP, and inversely correlated with plasma NO-metabolites, suggesting that reduced membrane fluidity of RBCs might be associated with increased oxidative stress, inflammation and endothelial dysfunction. Multivariate regression analysis also showed that, after adjusting for general risk factors, both plasma 8-iso-PG F2α and hs-CRP were significant determinants of membrane fluidity of RBCs. The ESR suggests that associations of oxidative stress and inflammation might have a close correlation with impaired rheologic behavior of RBCs and microcirculatory dysfunction in hypertensive men.展开更多
Magnetic properties of single-crystalline preferential {001}-oriented Bi2Fe4O9nanosheets with thickness of about 13 nm, synthesized via a facile hydrothermal method, have been investigated through variable temperature...Magnetic properties of single-crystalline preferential {001}-oriented Bi2Fe4O9nanosheets with thickness of about 13 nm, synthesized via a facile hydrothermal method, have been investigated through variable temperature electron spin resonance measurement. A typical ferromagnetic state could be appeared in the measured temperature from 110 K to 300 K and the origin would be contributed to uncompensated surface spin due to its large surface-to-volume ratio and/or a few non-detectable impurities with strong magnetism. Interestingly, another weak ferromagnetic state could present below the temperature about 250 K, indicative of Neel temperature (TN) of antiferromagnetic state, which is slightly lower than that of bulksample of 265 K.展开更多
Hyperhomocysteinemia and oxidative stress may be strongly linked to hypertension, atherosclerosis and other cardiovascular diseases. The present study was performed to investigate possible relationships among plasma t...Hyperhomocysteinemia and oxidative stress may be strongly linked to hypertension, atherosclerosis and other cardiovascular diseases. The present study was performed to investigate possible relationships among plasma total homocysteine, plasma 8-iso-prostaglandin F2α (8-isoPG F2α: an index of oxidative stress), and membrane fluidity (a reciprocal value of membrane microviscosity) in hypertension. We measured the membrane fluidity of red blood cells (RBCs) in hypertensive and normotensive men using an electron spin resonance (ESR) and spin-labeling method. Membrane fluidity of RBCs was significantly decreased in hypertensive men compared with normotensive men. Plasma total homocysteine levels were significantly higher in hypertensive men than in normotensive men, and correlated with plasma 8-isoPG F2α. In contrast, plasma nitric oxide (NO)-metabolites (an index of endothelial function) were lower in hypertensive men than in normotensive men. The reduced membrane fluidity of RBCs was associated with increased total homocysteine and plasma 8-isoPG F2α levels and decreased plasma NO-metabolite levels. Multivariate regression analysis showed that, after adjusting for general risk factors, plasma total homocysteine and 8-isoPG F2α were significant determinants of membrane fluidity of RBCs, respectively. These results suggest that hyperhomocysteinemia and oxidative stress with endothelial dysfunction might have a close correlation with impaired rheologic behavior of RBCs and circulatory disorders in hypertensive men.展开更多
The elementary particles listed in the Standard Model of particle physics have all in common a quantum mechanical attribute which has the dimension of the xon, suggesting that the xon might be a structural ingredient ...The elementary particles listed in the Standard Model of particle physics have all in common a quantum mechanical attribute which has the dimension of the xon, suggesting that the xon might be a structural ingredient of matter. The xon should therefore be included as a full-fledged member in the SM catalog of elementary particles.展开更多
A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system...A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system, and the 6 dimensional eigenmatrices of two new types in real and complex orbital representations were derived from this electron model forth. In comparison with real and complex orbital methods offered by the hole model, the real and complex orbital methods reported in this paper not only could give directly all the electronic structure parameters for the n d 5(t 5 2, 2T 2) multielectron system, but also showed many other new advantages such as standardization in theory, systematization in method, agreement in calculation and so on.展开更多
Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties g...Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H202) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, 02 is activated first, and the resulting reactive intermediates further activate H202 to produce ,OH. The reactive intermediates exhibit singlet oxygen-like (102-1ike) reactivity, indicated by 102-specific oxidation reaction, quenching behaviors, and the lack of the typical 102 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H202 activation can induce much stronger NaA oxidation than that in the absence of H202. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.展开更多
In order to explore the production of hydroxyl radical (.OH) in a confined space, a novel ozone-light irradiation system is constructed in this study, and the .OH radical is measured by spin-trapping electron spin r...In order to explore the production of hydroxyl radical (.OH) in a confined space, a novel ozone-light irradiation system is constructed in this study, and the .OH radical is measured by spin-trapping electron spin resonance (ESR) method in which 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) is selected as the spin-trap. Several influence factors including the light intensity, the irradiation time and DMPO mass concentration are discussed. The results show that in this experimental system, with DMPO mass concentration of lg/L and the irradiation time of 30 rain, the -OH radical can be best captured. Besides, both wavelength and intensity of the irradiation light could effect the generation of .OH radical. These results are of great importance to further study the sterilization effect of .OH radical in confined space.展开更多
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope...The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.展开更多
文摘The geometrization process of physics could involve, in addition to space and time in General Relativity (GR), even elementary particles. Our starting point is the formulation of an original hypothesis about particles, compatible with the basic assumptions of the Standard Model (SM): a massive particle is a geometric structure of a set of elastically coupled quantum oscillators that propagates along a line of a non-massive base field (in impulse eigenstate). We show that the propagation equation of an oscillation associated with the geometric shape representing an electron propagates following Dirac’s wave equation. Thus, one gives a foundation to a geometric model of massive particles (GMP) which would explain the physical origin of the mass, spin, and the magnetic moment of the electron.
基金supported by the National Natural Science Foundation of China (Grant No 50672126)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010102)
文摘We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.
基金supported by the National Basic Research Program of China(Grant No.2009CB929103)the National Natural Science Foundation of China(Grant No.10974251)
文摘A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11164019 and 11064008)the Inner Mongolia Natural ScienceFoundation,China(Grant Nos.NJZZ11166,NJZY10163,NJZY12202,2011MS0101,2011MS0108,and 2009MS0101)
文摘The effect of Eu3+ ion doping in the La sites of single-crystal La4/3Srs/3Mn2O7 was investigated. Electron spin resonance (ESR) was applied to La4/3Sr5/3Mn2O7 and (Lao.8Euo.2)4/3Sr5/3Mn2O7 single crystals. A phase separation and phase transitions were observed from the ESR spectra data. Between 350 K and 300 K, both paramagnetic resonance (PMR) and anisotropic ferromagnetic resonance (FMR) lines were observed in the ab plane and the c axis direction, suggesting a coexistence of the paramagnetic (PM) phase and the ferromagnetic (FM) phase. The magnetization measurement reveals a spin-glass-like behavior in single-crystal (Lao.8Euo.2)4/3 Sr5/3Mn2O7 below the temperature of spin freezing Tf (- 29.5 K).
文摘This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.
文摘ESR saturation power point of the hair of healthy, lung cancer, esophageal cancer, as well as silicosis, tuberculosis and cardiovascular disease were detected. The results show that the positive rate is 1.69%, 85.42%, 90.4%, 20.00%, 27.27% and 0% respectively. There is a significant difference between lung cancer, esophageal cancer and healthy persons (P<0. 001). ESR saturation power point elevates sharply after treatment of lung cancer, 71. 43% of total cases ranged from 7. 9 to 24. 0 (mW), after treatment of esophageal cancer, 71. 23% ranged from 7.9 to 19.9 (mW). All patients with cardiovascular disease were examined to be negative, i. e. , above 10. 0 (mW).
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921402 and 2015CB921103the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07010300the National Natural Science Foundation of China under Grant No 11574386
文摘We present the experimental results of nitrogen-vacancy (NV) electron spin decoherence, which are linked to the coexistence of electron spin bath of nitrogen impurity (PI center) and 13C nuclear spin bath. In previous works, only one dominant decoherence source is studied: P1 electron spin bath for type-Ⅰb diamond; or 13C nuclear spin bath for type-Ⅱa diamond. In general, the thermal fluctuation from both spin baths can be eliminated by the Hahn echo sequence, resulting in a long coherence time (T2 ) of about 400#8. However, in a high-purity type-Ⅱa diamond where 1℃ nuclear spin bath is the dominant decoherence source, dramatic decreases of NV electron spin T2 time caused by P1 electron spin bath are observed under certain magnetic field. We further apply the engineered Hahn echo sequence to confirm the decoherenee mechanism of multiple spin baths and quantitatively estimate the contribution of P1 electron spin bath. Our results are helpful to understand the NV decoherence mechanisms, which will benefit quantum computing and quantum metrology.
基金supported by the National Basic Research Program of China (Grant No 2009CB929201)the National Natural Science Foundation of China (Grant No 10774179)
文摘A Fe doped rutile TiO2 single crystal is grown in an O2 atmosphere by the floating zone technique. Electron spin resonance (ESR) spectra clearly demonstrate that Fe^3+ ions are substituted for the Ti^4+ ions in the rutile TiO2 matrix. Magnetization measurements reveal that the Fe:TiO2 crystal shows paramagnetic behaviour in a temperature range from 5 K to 350 K. The Fe^3+ ions possess weak magnetic anisotropy with an easy axis along the c axis. The annealed Fe:TiO2 crystal shows spin-glass-like behaviours due to the aggregation of the ferromagnetic clusters.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504194 and 11274189the Project of Shandong-Provincial Higher Educational Science and Technology Program under Grant No J14LJ06the Application Foundation Research Program of Qingdao under Grant No 14-2-4-101-jch
文摘With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1OK. We consider the exciting light with right-handed circular polarization, and the calculation results show that the degree of electron spin polarization is dependent strongly on the quasi-Fermi levels of |1/2) and |- 1/2) spin conduction bands. At room temperature, the degree of electron spin polarization decreases sharply from 1 near the bottom of the conduction band, and then increases to a stable value above the quasi-Fermi level of the |- 1/2) band. The greater the quasi-Fermi level is, the higher the degree of electron spin polarization with excessive en- ergy above the quasi-Fermi level of the |- 1/2) band can be achieved. At low temperature, the degree of electron spin polarization decreases from 1 sharply near the bottom of the conduction band, and then increases with the excessive energy, and in particular, up to a maximum of i above the quasi-Fermi level of the |1/2) band.
基金Supported by the National Natural Science Foundation Program of China under Grant Nos 11274302,11474276 and 61290303
文摘The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al0.3 Gao,TAs quantum wells is studied using the time-resolved magneto-Kerr rotation measurements. The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density, Moreover, the relative strength of the Rashba and the Dresselhaus spin-rbit coupling fields, and thus the observed spin relaxation time anisotropy, is further tuned by the additional excitation of a 532nm continuous wave laser, demonstrating an effective spin relaxation manipulation via an optical gating method.
文摘The present paper reviews new findings in redoxproperties of the active constituent of Chinese herbalmedicine(CHM),a kind of CHM or a compoundprescription as an antioxidant.Firstly,we have studiedtheir antioxidant and prooxidant actions with electronspin resonance(ESR).The results show that the activecomponents from over 10 kinds of CHM are able toscavenge the oxygen free radicals but propyl gallate
文摘There is evidence showing that increased levels of oxidative stress and C-reactive protein (CRP) might be associated with obesity, hypertension, atherosclerosis and other cardiovascular diseases. This study was undertaken to investigate possible relationships among plasma 8-iso-prostaglandin F2α (8-iso-PG F2α: an index of oxidative stress), high-sensitivity (hs)-CRP and membrane fluidity (a reciprocal value of microviscosity) in hypertensive and normotensive men using an electron spin resonance (ESR)-method. The order parameter (S) for the spin-label agents (5-nitroxide stearate) of red blood cell (RBC) membranes in the ESR spectra was significantly higher in hypertensive men than in normotensive men, indicating that membrane fluidity was decreased in hypertensive men. Both plasma 8-iso-PG F2α and hs-CRP levels were significantly increased in hypertensive men compared with normotensive men. In addition, plasma plasma 8-iso-PG F2α levels were correlated with plasma hs-CRP levels. In contrast, plasma nitric oxide (NO)-metabolites were lower in hypertensive men than in normotensive men, and inversely correlated with plasma 8-iso-PG F2α and hs-CRP. The order parameter(S) of RBCs was correlated with plasma 8-iso-PG F2α and plasma hs-CRP, and inversely correlated with plasma NO-metabolites, suggesting that reduced membrane fluidity of RBCs might be associated with increased oxidative stress, inflammation and endothelial dysfunction. Multivariate regression analysis also showed that, after adjusting for general risk factors, both plasma 8-iso-PG F2α and hs-CRP were significant determinants of membrane fluidity of RBCs. The ESR suggests that associations of oxidative stress and inflammation might have a close correlation with impaired rheologic behavior of RBCs and microcirculatory dysfunction in hypertensive men.
文摘Magnetic properties of single-crystalline preferential {001}-oriented Bi2Fe4O9nanosheets with thickness of about 13 nm, synthesized via a facile hydrothermal method, have been investigated through variable temperature electron spin resonance measurement. A typical ferromagnetic state could be appeared in the measured temperature from 110 K to 300 K and the origin would be contributed to uncompensated surface spin due to its large surface-to-volume ratio and/or a few non-detectable impurities with strong magnetism. Interestingly, another weak ferromagnetic state could present below the temperature about 250 K, indicative of Neel temperature (TN) of antiferromagnetic state, which is slightly lower than that of bulksample of 265 K.
文摘Hyperhomocysteinemia and oxidative stress may be strongly linked to hypertension, atherosclerosis and other cardiovascular diseases. The present study was performed to investigate possible relationships among plasma total homocysteine, plasma 8-iso-prostaglandin F2α (8-isoPG F2α: an index of oxidative stress), and membrane fluidity (a reciprocal value of membrane microviscosity) in hypertension. We measured the membrane fluidity of red blood cells (RBCs) in hypertensive and normotensive men using an electron spin resonance (ESR) and spin-labeling method. Membrane fluidity of RBCs was significantly decreased in hypertensive men compared with normotensive men. Plasma total homocysteine levels were significantly higher in hypertensive men than in normotensive men, and correlated with plasma 8-isoPG F2α. In contrast, plasma nitric oxide (NO)-metabolites (an index of endothelial function) were lower in hypertensive men than in normotensive men. The reduced membrane fluidity of RBCs was associated with increased total homocysteine and plasma 8-isoPG F2α levels and decreased plasma NO-metabolite levels. Multivariate regression analysis showed that, after adjusting for general risk factors, plasma total homocysteine and 8-isoPG F2α were significant determinants of membrane fluidity of RBCs, respectively. These results suggest that hyperhomocysteinemia and oxidative stress with endothelial dysfunction might have a close correlation with impaired rheologic behavior of RBCs and circulatory disorders in hypertensive men.
文摘The elementary particles listed in the Standard Model of particle physics have all in common a quantum mechanical attribute which has the dimension of the xon, suggesting that the xon might be a structural ingredient of matter. The xon should therefore be included as a full-fledged member in the SM catalog of elementary particles.
文摘A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system, and the 6 dimensional eigenmatrices of two new types in real and complex orbital representations were derived from this electron model forth. In comparison with real and complex orbital methods offered by the hole model, the real and complex orbital methods reported in this paper not only could give directly all the electronic structure parameters for the n d 5(t 5 2, 2T 2) multielectron system, but also showed many other new advantages such as standardization in theory, systematization in method, agreement in calculation and so on.
文摘Gold nanostructures are among the noble metal nanomaterials being intensely studied due to their good biocompatibility, tunable localized surface plasmon resonance (SPR), and ease of modification. These properties give gold nano- structures many potential chemical and biomedical applications. Herein, we demonstrate the critical role of oxygen activation during the decomposition of hydrogen peroxide (H202) in the presence of photoexcited gold nanorods (AuNRs) by using electron spin resonance (ESR) techniques. Upon SPR excitation, 02 is activated first, and the resulting reactive intermediates further activate H202 to produce ,OH. The reactive intermediates exhibit singlet oxygen-like (102-1ike) reactivity, indicated by 102-specific oxidation reaction, quenching behaviors, and the lack of the typical 102 ESR signal. In addition, by using the antioxidant sodium ascorbate (NaA) as an example, we show that hydroxyl radicals from H202 activation can induce much stronger NaA oxidation than that in the absence of H202. These results may have significant biomedical implications. For example, as oxidative stress levels are known to influence tumorigenesis and cancer progression, the ability to control redox status inside tumor microenvironments using noble metal nanostructures may provide new strategies for regulating the metabolism of reactive oxygen species and new approaches for cancer treatment.
文摘In order to explore the production of hydroxyl radical (.OH) in a confined space, a novel ozone-light irradiation system is constructed in this study, and the .OH radical is measured by spin-trapping electron spin resonance (ESR) method in which 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) is selected as the spin-trap. Several influence factors including the light intensity, the irradiation time and DMPO mass concentration are discussed. The results show that in this experimental system, with DMPO mass concentration of lg/L and the irradiation time of 30 rain, the -OH radical can be best captured. Besides, both wavelength and intensity of the irradiation light could effect the generation of .OH radical. These results are of great importance to further study the sterilization effect of .OH radical in confined space.
基金supported by the National Natural Science Foundation of China(21801090,21831003 and 21621001)the Jilin Scientific and Technological Development Program(20200802003GH)+2 种基金the Scientific Research Project in the Education Department of Jilin Province(JJKH20211044KJ)the Project on Experimental Technique of Jilin University(409020720202)supported by Users with the Excellence Program of Hefei Science Center CAS(2020HSC-UE002)。
文摘The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.