The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are take...The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring. The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.展开更多
The new reactor concepts are characterized by higher efficiency, better utilization of nuclear fuel and nuclear waste minimization. This approach means that it is necessary to continue a continued research and test of...The new reactor concepts are characterized by higher efficiency, better utilization of nuclear fuel and nuclear waste minimization. This approach means that it is necessary to continue a continued research and test of new materials in order to apply them in new reactors. In this study, the authors fbcused on the analysis of SiC alloys because, due to their particular properties, this alloy can be used in high temperature conditions where the pure silicon, semiconductor material par excellence, is inadequate to support them.展开更多
The qualitative model of the high-temperature superconductivity suggested earlier for cuprates and based on the idea that the superconductivity is associated with delocalized π bonding between ions is not only confir...The qualitative model of the high-temperature superconductivity suggested earlier for cuprates and based on the idea that the superconductivity is associated with delocalized π bonding between ions is not only confirmed by experimental data on iron pnictides but is also improved. It is shown that the FeAs layer state is similar to that of a macroscopic quantum system characterized by a sandwich-type charge distribution in which negatively charged planes are two-dimensional electron crystals of pairs and positively charged planes are formed by positively charged ions. Superconductivity in such a system is accomplished by a two-dimensional Wigner crystal of bosons condensed into one and the same state. The crystal occupies a middle position with respect to charged planes in the sandwich structure, which leads to mutual compensation of all its interactions with all charged planes. The model can prove useful for development of the theory of superconductivity taking into consideration the highly correlated state of all valence electrons that manifests itself in formation of electron crystals with strong Coulomb interactions between them.展开更多
All of the experimentally known electronic states of the Cr group metal monoxides(Cr O,Mo O,and WO)have been presented in the paper.The optical spectra of the Cr O molecule have been investigated in the gas phase thro...All of the experimentally known electronic states of the Cr group metal monoxides(Cr O,Mo O,and WO)have been presented in the paper.The optical spectra of the Cr O molecule have been investigated in the gas phase through a combination of the laser-induced fluorescence(LIF)excitation and single-vibronic-level(SVL)emission spectroscopy in the supersonic expansion.The rotational constants of the vibronic electronic states,including X^(5)Π_(-1)(v=0–3),B^(5)Π_(-1)(v=0–10),and B~5Π_1(v=1,5),and the vibrational constants of the spin–orbit components X^(5)Π_(-1,0,1)have been obtained.The molecular constants of the Mo O and WO molecules have been summarized by reviewing the previous spectroscopic studies,and a comprehensive energy level diagram of the Cr group metal monoxides has been constructed.By comparing the electronic configurations,bond lengths,and vibrational frequencies of all the transition metal monoxides in the ground electronic state,the significance of the relativistic effect in the bonding of the 5d transition metal monoxides has been discussed.The related spectroscopic data of the Cr O molecule are available at https://doi.org/10.57760/sciencedb.j00113.00085.展开更多
We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is in...We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is investigated. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model for the second triplet state of the system. The investigations show that the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.展开更多
The development of low-cost and high-active cocatalysts is one of the most significant links for photocatalytic water splitting.Herein,a novel strategy of electron delocalization modulation for transition metal sulfid...The development of low-cost and high-active cocatalysts is one of the most significant links for photocatalytic water splitting.Herein,a novel strategy of electron delocalization modulation for transition metal sulfides has been developed by anion hybridization.P-modified CoS_(2)(CoS_(2)|P)nanocrystals were firstly fabricated via a gas-solid reaction and coupled with CdS nanorods to construct a composite catalyst for solar H2 evolution reaction(HER).The CdS/CoS_(2)|P catalyst shows an HER rate of 57.8 pmol h-1,which is 18 times that of the bare CdS,8 times that of the CdS/CoS2,and twice that of Pt/CdS.The reduced energy barrier and suppressed reverse reaction for HER on the catalyst have been predicted and explained by density functional theory(DFT)calculation.The underlying design strategy of novel cocatalysts by electron delocalization modulation may shed light on the rational development of other advanced catalysts for energy conversion.展开更多
The exactly solvable model of quasi-conical quantum dot, having a form of spherical sector, is proposed. Due to the specific symmetry of the problem the separation of variables in spherical coordinates is possible in ...The exactly solvable model of quasi-conical quantum dot, having a form of spherical sector, is proposed. Due to the specific symmetry of the problem the separation of variables in spherical coordinates is possible in the one- electron Sehrodinger equation. Analytical expressions for wave function and energy spectrum are obtained. It is shown that at small values of the stretch angle of spherical sector the problem is reduced to the conical QD problem. The comparison with previously performed works shows good agreement of results. As an application of the obtained results, the quantum transitions in the system are considered.展开更多
The shallow hydrogenic donor impurity states in square, V-shaped, and parabolic quantum wells are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The first four impurity...The shallow hydrogenic donor impurity states in square, V-shaped, and parabolic quantum wells are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The first four impurity energy levels and binding energy of the ground state are more easily calculated than with the variation method. The calculation results indicate that impurity energy levels decrease with the increase of the well width and decrease quickly when the well width is small. The binding energy of the ground state increases until it reaches a maximum value, and then decreases as the well width increases. The results are meaningful and can be widely applied in the design of various optoelectronie devices.展开更多
We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional el...We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional electron. For each nonlocal N-electron system, Alice first entangles it with the additional electron, and then she projects the additional electron onto an orthogonal basis for dividing the N-electron systems into two groups. In the first group, the N parties obtain a subset of N-electron systems in a maximally entangled state directly. In the second group, they obtain some less-entangled N-electron systems, which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability, which is the theoretical limit of an ECP, equal to the entanglement of the partially entangled state, and higher than the others. This ECP may be useful in quantum computers based on electron-spin systems in the future.展开更多
The electronic band structures, densities of states (DOSs), and projected densities of states (PDOSs) of the wurtzite In1-xGaxN with x=0, 0.0625, 0.125 are studied using the generalized-gradient approximation (GG...The electronic band structures, densities of states (DOSs), and projected densities of states (PDOSs) of the wurtzite In1-xGaxN with x=0, 0.0625, 0.125 are studied using the generalized-gradient approximation (GGA) and GGA+U in density functional theory. Our calculations suggest that in the case of wurtzite InN it is important to apply an on-site Hubbard correction to both the d states of indium and the p states of nitrogen in order to recover the correct energy level symmetry and obtain a reliable description of the InN band structure. The method is used to study the electronic properties of the wurtzite In1-xGaxN. The conduction band minimum (CBM) energy increases, while the valence band maximum (VBM) energy decreases with the increase of the gallium concentration. The effect leads to broadening the band gap (BG) and the valence band width (VBW). Furthermore, the compressive strain in the crystal can cause the BG and the VBW to increase with the increase of gallium concentrations.展开更多
Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the t...Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the thinnest unit to bulk crystals. Ultrathin Bi (111) bilayers have been theoretically proposed as a two-dimensional topological insulator. The related experimental realization achieved only recently, by growing Bi (111) ultrathin bilayers on topological insulator Bi2Te3 or Bi2Se3 substrates. In this review, we started from the growth mode of Bi (111) bilayers and reviewed our recent progress in the studies of the electronic structures and the one-dimensional topological edge states using scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and first principles calculations.展开更多
We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods includi...We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures展开更多
Poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene](MEH-PPV)solutions with different concen-trations were prepared in chloroform for different ultrasonication times.The ultraviolet absorption and photolu...Poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene](MEH-PPV)solutions with different concen-trations were prepared in chloroform for different ultrasonication times.The ultraviolet absorption and photoluminescence(PL)spectra of the MEH-PPV solutions were measured,and the electronic states of the polymer chains under different experimental conditions were studied.The results showed that the effects of ultrasonication on the dilute and concentrated solutions were different.After ultrasonication,the intensity of the absorption peak at 280 nm significantly decreased,relative to the absorption peak at 500 nm for both dilute and concentrated solutions,indicating that the proportion of the two excited states in the polymer chains had changed.For dilute MEH-PPV solutions,the blue-shifted absorption(at about 500 nm)and PL spectra show that ultrasonication also led to polymer chain degradation and thus shortened the effective conjugation length.For concentrated solutions,however,the peak positions of the absorption spectra remained unchanged.In addition,the effects of the solution temperatures on the optical spectra for the MEH-PPV solutions were also discussed.展开更多
ITIC is the milestone of non-fullerene small molecule acceptors used in organic solar cells. We study the electronic states and molecular orientation of ITIC film using photoelectron spectroscopy and x-ray absorption ...ITIC is the milestone of non-fullerene small molecule acceptors used in organic solar cells. We study the electronic states and molecular orientation of ITIC film using photoelectron spectroscopy and x-ray absorption spectroscopy. The negative integer charge transfer energy level is determined to be 4.00 ± 0.05 eV below the vacuum level, and the ionization potential is 5,75 ±0.10 eV. The molecules predominantly have the face-on orientation on inert substrates as long as the surfaces of the substrates are not too rough. These results provide the physical understanding of the high performance of ITIC-based solar ceils, which also afford implications to design more advanced photovoltaic small molecules.展开更多
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope...The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.展开更多
Electronic engineering of gallium nitride(Ga N) is critical for enhancement of its electrode performance.In this work, copper(Cu) cation substituted Ga N(Cu-Ga N) nanowires were fabricated to understand the electronic...Electronic engineering of gallium nitride(Ga N) is critical for enhancement of its electrode performance.In this work, copper(Cu) cation substituted Ga N(Cu-Ga N) nanowires were fabricated to understand the electronically engineered electrochemical performance for Li ion storage. Cu cation substitution was revealed at atomic level by combination of X-ray photoelectron spectroscopy(XPS), X-ray absorption fine structure(XAFS), density functional theory(DFT) simulation, and so forth. The Cu-Ga N electrode delivered high capacity of 813.2 m A h g^(-1) at 0.1 A g^(-1) after 200 cycles, increased by 66% relative to the unsubstituted Ga N electrode. After 2000 cycles at 10 A g^(-1),the reversible capacity was still maintained at326.7 m A h g^(-1). The DFT calculations revealed that Cu substitution introduced the impurity electronic states and efficient interatomic electron migration, which can enhance the charge transfer efficiency and reduce the Li ion adsorption energy on the Cu-Ga N electrode. The ex-situ SEM, TEM, HRTEM, and SAED analyses demonstrated the reversible intercalation Li ion storage mechanism and good structural stability. The concept of atomic-arrangement-assisted electronic engineering strategy is anticipated to open up opportunities for advanced energy storage applications.展开更多
The low-energy electronic states and energy gaps of carbon nanocones in an electric field are studied using a single-?-band tight-binding model. The analysis considers five perfect carbon nanocones with disclination a...The low-energy electronic states and energy gaps of carbon nanocones in an electric field are studied using a single-?-band tight-binding model. The analysis considers five perfect carbon nanocones with disclination angles of 60°, 120°, 180°, 240° and 300°, respectively. The numerical results reveal that the low-energy electronic states and energy gaps of a carbon nanocones are highly sensitive to its geometric shape(i.e. the disclination angle and height), and to the direction and magnitude of an electric field. The electric field causes a strong modulation of the state energies and energy gaps of the nanocones, changes their Fermi levels, and induces zero-gap transitions. The energy-gap modulation effect becomes particularly pronounced at higher strength of the applied electric field, and is strongly related to the geometric structure of the nanocone.展开更多
The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π...The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π,2;∑;,1;△,1;△,1;∑;,1;Π,and;∑;in a range of R=0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(;S;) + N(;S;) and Cu(;S;)+N(;D;) dissociation limits.All the possible vibrational levels,rotational constants,and spectral constants for the six bound states of X;∑;,1;Π,2;∑;,1;△,1;∑;,and 1;Π are obtained by solving the radial Schrdinger equation of nuclear motion with the Le Roy provided Level 8.0 program.Also the transition dipole moments from the ground state X;∑;to the excited states 1;Π and 2;∑;are calculated and the result indicates that the 2;∑-X;∑ transition has a much higher transition dipole moment than the 1;Π-X;∑;transition even though the l;Π state is much lower in energy than the 2;∑;state.展开更多
The equilibrium geometries,excitation energies,force constants and vibrational frequencies for the low-ly- ing electronic states X ~2B_1,~2A_1,~2B_2 and ~2A_2 of the AsH_2 radical have been calculated at the MRSDCI le...The equilibrium geometries,excitation energies,force constants and vibrational frequencies for the low-ly- ing electronic states X ~2B_1,~2A_1,~2B_2 and ~2A_2 of the AsH_2 radical have been calculated at the MRSDCI level with a 3-21G~* basis set.Our calculated geometries,excitation enegies and vibional frequencies for the X ~2B_1 and ~2A_1 states are in good agreement with available experimental data.The electronic transition dipole mo- ments,oscillator strengths for the ~2A_1→X ~2B_1 and ~2A_2→X ~2B_1 transitions,radiative lifetimes for the ~2A_1 and ~2A_2 states are calculated based on the MRSDC^1 wavefunctions,predicting results in reasonable agreement with available experiment.展开更多
We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-...We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He^(+)with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.展开更多
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405)the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068)the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0411)
文摘The electron states in a two-dimensional GaAs/AlGaAs quantum ring are theoretically studied in effective mass approximation. On-centre donor impurity and uniform magnetic field perpendicular to the ring plane are taken into account. The energy spectrum with different angular momentum changes dramatically with the geometry of the ring. The donor impurity reduces the energies with an almost fixed value; however, the magnetic field alters energies in a more complex way. For example, energy levels under magnetic field will cross each other when increasing the inner radius and outer radius of the ring, leading to the fact that the arrangement of energy levels is distinct in certain geometry of the ring. Moreover, energy levels with negative angular momentum exhibit the non-monotonous dependence on the increasing magnetic field.
文摘The new reactor concepts are characterized by higher efficiency, better utilization of nuclear fuel and nuclear waste minimization. This approach means that it is necessary to continue a continued research and test of new materials in order to apply them in new reactors. In this study, the authors fbcused on the analysis of SiC alloys because, due to their particular properties, this alloy can be used in high temperature conditions where the pure silicon, semiconductor material par excellence, is inadequate to support them.
文摘The qualitative model of the high-temperature superconductivity suggested earlier for cuprates and based on the idea that the superconductivity is associated with delocalized π bonding between ions is not only confirmed by experimental data on iron pnictides but is also improved. It is shown that the FeAs layer state is similar to that of a macroscopic quantum system characterized by a sandwich-type charge distribution in which negatively charged planes are two-dimensional electron crystals of pairs and positively charged planes are formed by positively charged ions. Superconductivity in such a system is accomplished by a two-dimensional Wigner crystal of bosons condensed into one and the same state. The crystal occupies a middle position with respect to charged planes in the sandwich structure, which leads to mutual compensation of all its interactions with all charged planes. The model can prove useful for development of the theory of superconductivity taking into consideration the highly correlated state of all valence electrons that manifests itself in formation of electron crystals with strong Coulomb interactions between them.
基金the National Key R&D Program of China(Grant No.2022YFA1602500)the National Natural Science Foundation of China(Grant No.12027809)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21030900)。
文摘All of the experimentally known electronic states of the Cr group metal monoxides(Cr O,Mo O,and WO)have been presented in the paper.The optical spectra of the Cr O molecule have been investigated in the gas phase through a combination of the laser-induced fluorescence(LIF)excitation and single-vibronic-level(SVL)emission spectroscopy in the supersonic expansion.The rotational constants of the vibronic electronic states,including X^(5)Π_(-1)(v=0–3),B^(5)Π_(-1)(v=0–10),and B~5Π_1(v=1,5),and the vibrational constants of the spin–orbit components X^(5)Π_(-1,0,1)have been obtained.The molecular constants of the Mo O and WO molecules have been summarized by reviewing the previous spectroscopic studies,and a comprehensive energy level diagram of the Cr group metal monoxides has been constructed.By comparing the electronic configurations,bond lengths,and vibrational frequencies of all the transition metal monoxides in the ground electronic state,the significance of the relativistic effect in the bonding of the 5d transition metal monoxides has been discussed.The related spectroscopic data of the Cr O molecule are available at https://doi.org/10.57760/sciencedb.j00113.00085.
文摘We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is investigated. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model for the second triplet state of the system. The investigations show that the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues.
基金supported by the National Natural Science Foundation of China(Nos.51872138 and 22002060)Natural Science Foundation of Jiangsu Province(No.BK20181380)+2 种基金Qing Lan Project,Six Talent Peaks Project in Jiangsu Province(No.XCL-029)Priority Academic Program Development of the Jiangsu Higher Education Institutions(PAPD).Dr.Hengming Huang gratefully acknowledges the support provided by China Scholarships Council(CSC No.202008320109)China Postdoctoral Science Foundation(No.2020M681564).
文摘The development of low-cost and high-active cocatalysts is one of the most significant links for photocatalytic water splitting.Herein,a novel strategy of electron delocalization modulation for transition metal sulfides has been developed by anion hybridization.P-modified CoS_(2)(CoS_(2)|P)nanocrystals were firstly fabricated via a gas-solid reaction and coupled with CdS nanorods to construct a composite catalyst for solar H2 evolution reaction(HER).The CdS/CoS_(2)|P catalyst shows an HER rate of 57.8 pmol h-1,which is 18 times that of the bare CdS,8 times that of the CdS/CoS2,and twice that of Pt/CdS.The reduced energy barrier and suppressed reverse reaction for HER on the catalyst have been predicted and explained by density functional theory(DFT)calculation.The underlying design strategy of novel cocatalysts by electron delocalization modulation may shed light on the rational development of other advanced catalysts for energy conversion.
文摘The exactly solvable model of quasi-conical quantum dot, having a form of spherical sector, is proposed. Due to the specific symmetry of the problem the separation of variables in spherical coordinates is possible in the one- electron Sehrodinger equation. Analytical expressions for wave function and energy spectrum are obtained. It is shown that at small values of the stretch angle of spherical sector the problem is reduced to the conical QD problem. The comparison with previously performed works shows good agreement of results. As an application of the obtained results, the quantum transitions in the system are considered.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (PRC)Foundation of Qufu Normal University under Grant No. XJ0622
文摘The shallow hydrogenic donor impurity states in square, V-shaped, and parabolic quantum wells are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The first four impurity energy levels and binding energy of the ground state are more easily calculated than with the variation method. The calculation results indicate that impurity energy levels decrease with the increase of the well width and decrease quickly when the well width is small. The binding energy of the ground state increases until it reaches a maximum value, and then decreases as the well width increases. The results are meaningful and can be widely applied in the design of various optoelectronie devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10974020 and 11174039)the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0031)the Fundamental Research Funds for the Central Universities, China
文摘We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional electron. For each nonlocal N-electron system, Alice first entangles it with the additional electron, and then she projects the additional electron onto an orthogonal basis for dividing the N-electron systems into two groups. In the first group, the N parties obtain a subset of N-electron systems in a maximally entangled state directly. In the second group, they obtain some less-entangled N-electron systems, which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability, which is the theoretical limit of an ECP, equal to the entanglement of the partially entangled state, and higher than the others. This ECP may be useful in quantum computers based on electron-spin systems in the future.
基金Project supported by the National Natural Science Foundation of China(Grant No.50971094)the Natural Science Foundation of Beijing,China(Grant Nos.KZ201310028032 and 1092007)the Domestic Visiting Program for the Graduate Students of Inner Mongolia University,China
文摘The electronic band structures, densities of states (DOSs), and projected densities of states (PDOSs) of the wurtzite In1-xGaxN with x=0, 0.0625, 0.125 are studied using the generalized-gradient approximation (GGA) and GGA+U in density functional theory. Our calculations suggest that in the case of wurtzite InN it is important to apply an on-site Hubbard correction to both the d states of indium and the p states of nitrogen in order to recover the correct energy level symmetry and obtain a reliable description of the InN band structure. The method is used to study the electronic properties of the wurtzite In1-xGaxN. The conduction band minimum (CBM) energy increases, while the valence band maximum (VBM) energy decreases with the increase of the gallium concentration. The effect leads to broadening the band gap (BG) and the valence band width (VBW). Furthermore, the compressive strain in the crystal can cause the BG and the VBW to increase with the increase of gallium concentrations.
基金supported by the National Basic Research Program of China (Grants Nos. 2012CB927401,2011CB921902,2013CB921902,and 2011CB922200)the National Natural Science Foundation of China (Grants Nos. 91021002,11174199,11134008,and 11274228)SCSTC (Grant Nos. 11JC1405000,11PJ1405200,and 12JC1405300)
文摘Providing the strong spin-orbital interaction, Bismuth is the key element in the family of three-dimensional topological insulators. At the same time, Bismuth itself also has very unusual behavior, existing from the thinnest unit to bulk crystals. Ultrathin Bi (111) bilayers have been theoretically proposed as a two-dimensional topological insulator. The related experimental realization achieved only recently, by growing Bi (111) ultrathin bilayers on topological insulator Bi2Te3 or Bi2Se3 substrates. In this review, we started from the growth mode of Bi (111) bilayers and reviewed our recent progress in the studies of the electronic structures and the one-dimensional topological edge states using scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and first principles calculations.
基金Supported by the 2014 Postdoctoral Sustentation Fund of Qingdao under Grant No 01020120517the Natural Science Foundation of Shandong Province under Grant No ZR2014AP001+1 种基金the National Natural Science Foundation of China under Grant No11447226the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents under Grant No 2015RCJJ015
文摘We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures
基金the Shanghai Leading Academic Discipline Project(No.B113)the Program for New Century ExcellentTalents(NCET)in University of China(No.NCET-04-0355).
文摘Poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene](MEH-PPV)solutions with different concen-trations were prepared in chloroform for different ultrasonication times.The ultraviolet absorption and photoluminescence(PL)spectra of the MEH-PPV solutions were measured,and the electronic states of the polymer chains under different experimental conditions were studied.The results showed that the effects of ultrasonication on the dilute and concentrated solutions were different.After ultrasonication,the intensity of the absorption peak at 280 nm significantly decreased,relative to the absorption peak at 500 nm for both dilute and concentrated solutions,indicating that the proportion of the two excited states in the polymer chains had changed.For dilute MEH-PPV solutions,the blue-shifted absorption(at about 500 nm)and PL spectra show that ultrasonication also led to polymer chain degradation and thus shortened the effective conjugation length.For concentrated solutions,however,the peak positions of the absorption spectra remained unchanged.In addition,the effects of the solution temperatures on the optical spectra for the MEH-PPV solutions were also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374258 and 11079028)
文摘ITIC is the milestone of non-fullerene small molecule acceptors used in organic solar cells. We study the electronic states and molecular orientation of ITIC film using photoelectron spectroscopy and x-ray absorption spectroscopy. The negative integer charge transfer energy level is determined to be 4.00 ± 0.05 eV below the vacuum level, and the ionization potential is 5,75 ±0.10 eV. The molecules predominantly have the face-on orientation on inert substrates as long as the surfaces of the substrates are not too rough. These results provide the physical understanding of the high performance of ITIC-based solar ceils, which also afford implications to design more advanced photovoltaic small molecules.
基金supported by the National Natural Science Foundation of China(21801090,21831003 and 21621001)the Jilin Scientific and Technological Development Program(20200802003GH)+2 种基金the Scientific Research Project in the Education Department of Jilin Province(JJKH20211044KJ)the Project on Experimental Technique of Jilin University(409020720202)supported by Users with the Excellence Program of Hefei Science Center CAS(2020HSC-UE002)。
文摘The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.
基金supported by the National Natural Science Foundation of China(51672144,51572137,5170218121905152,52072196,52002199,52002200)the Major Basic Research Program of Natural Science Foundation of Shandong Province(ZR2020ZD09)+5 种基金the Shandong Provincial Key Research and Development Program(SPKR&DP)(2019GGX102055)the Natural Science Foundation of Shandong Province(ZR2019BEM042 ZR2020QE063,ZR2020MB045)the Innovation and Technology Program of Shandong Province(2020KJA004)the Innovation Pilot Project of Integration of Science,Education and Industry of Shandong Province(2020KJC-CG04)the Guangdong Basic and Applied Basic Research Foundation(019A15151109332020A1515111086,2020A1515110219)the Shandong Provincial Universities Young Innovative Talent Incubation ProgramInorganic Non-metallic Materials Research and Innovation Team,and Taishan Scholars Program of Shandong Province(ts201511034)。
文摘Electronic engineering of gallium nitride(Ga N) is critical for enhancement of its electrode performance.In this work, copper(Cu) cation substituted Ga N(Cu-Ga N) nanowires were fabricated to understand the electronically engineered electrochemical performance for Li ion storage. Cu cation substitution was revealed at atomic level by combination of X-ray photoelectron spectroscopy(XPS), X-ray absorption fine structure(XAFS), density functional theory(DFT) simulation, and so forth. The Cu-Ga N electrode delivered high capacity of 813.2 m A h g^(-1) at 0.1 A g^(-1) after 200 cycles, increased by 66% relative to the unsubstituted Ga N electrode. After 2000 cycles at 10 A g^(-1),the reversible capacity was still maintained at326.7 m A h g^(-1). The DFT calculations revealed that Cu substitution introduced the impurity electronic states and efficient interatomic electron migration, which can enhance the charge transfer efficiency and reduce the Li ion adsorption energy on the Cu-Ga N electrode. The ex-situ SEM, TEM, HRTEM, and SAED analyses demonstrated the reversible intercalation Li ion storage mechanism and good structural stability. The concept of atomic-arrangement-assisted electronic engineering strategy is anticipated to open up opportunities for advanced energy storage applications.
基金supported in part by the National Science Council of Taiwan under Grant Nos.NSC 96-2221-E-492-007-MY3 and NSC 98-2221-E-006-131-MY3National Center for Theoretical Science(NCTS)in Taiwan
文摘The low-energy electronic states and energy gaps of carbon nanocones in an electric field are studied using a single-?-band tight-binding model. The analysis considers five perfect carbon nanocones with disclination angles of 60°, 120°, 180°, 240° and 300°, respectively. The numerical results reveal that the low-energy electronic states and energy gaps of a carbon nanocones are highly sensitive to its geometric shape(i.e. the disclination angle and height), and to the direction and magnitude of an electric field. The electric field causes a strong modulation of the state energies and energy gaps of the nanocones, changes their Fermi levels, and induces zero-gap transitions. The energy-gap modulation effect becomes particularly pronounced at higher strength of the applied electric field, and is strongly related to the geometric structure of the nanocone.
文摘The high accuracy ab initio calculation method of multi-reference configuration interaction(MRCI) is used to compute the low-lying eight electronic states of CuN.The potential energy curves(PECs) of the X;∑;,1;Π,2;∑;,1;△,1;△,1;∑;,1;Π,and;∑;in a range of R=0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(;S;) + N(;S;) and Cu(;S;)+N(;D;) dissociation limits.All the possible vibrational levels,rotational constants,and spectral constants for the six bound states of X;∑;,1;Π,2;∑;,1;△,1;∑;,and 1;Π are obtained by solving the radial Schrdinger equation of nuclear motion with the Le Roy provided Level 8.0 program.Also the transition dipole moments from the ground state X;∑;to the excited states 1;Π and 2;∑;are calculated and the result indicates that the 2;∑-X;∑ transition has a much higher transition dipole moment than the 1;Π-X;∑;transition even though the l;Π state is much lower in energy than the 2;∑;state.
文摘The equilibrium geometries,excitation energies,force constants and vibrational frequencies for the low-ly- ing electronic states X ~2B_1,~2A_1,~2B_2 and ~2A_2 of the AsH_2 radical have been calculated at the MRSDCI level with a 3-21G~* basis set.Our calculated geometries,excitation enegies and vibional frequencies for the X ~2B_1 and ~2A_1 states are in good agreement with available experimental data.The electronic transition dipole mo- ments,oscillator strengths for the ~2A_1→X ~2B_1 and ~2A_2→X ~2B_1 transitions,radiative lifetimes for the ~2A_1 and ~2A_2 states are calculated based on the MRSDC^1 wavefunctions,predicting results in reasonable agreement with available experiment.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074142)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)the Graduate Innovation Fund of Jilin University,China(Grant No.101832020CX337)。
文摘We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He^(+)with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.