期刊文献+
共找到21,902篇文章
< 1 2 250 >
每页显示 20 50 100
Four-Electron Systems in the Impurity Hubbard Model. Second Triplet State. Spectra of the System in the ν-Dimensional Lattice Zν
1
作者 S. M. Tashpulatov R. T. Parmanova 《Journal of Applied Mathematics and Physics》 2023年第11期3393-3427,共35页
We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is in... We consider an energy operator of four-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. The spectrum of the systems in the second triplet state in a ν-dimensional lattice is investigated. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model for the second triplet state of the system. The investigations show that the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues. 展开更多
关键词 Spectra of Four-electron system Bound State Anti-Bound State Impurity Hubbard Model Quintet State Singlet State Triplet State
下载PDF
Realizations, Characterizations, and Manipulations of Two-Dimensional Electron Systems Floating above Superfluid Helium Surfaces
2
作者 魏浩然 吴蒙蒙 +4 位作者 王任飞 何明城 Hiroki Ikegami 刘阳 程智刚 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第12期133-137,共5页
Electron systems in low dimensions are enriched with many superior properties for both fundamental research and technical developments. Wide tunability of electron density, high mobility of motion, and feasible contro... Electron systems in low dimensions are enriched with many superior properties for both fundamental research and technical developments. Wide tunability of electron density, high mobility of motion, and feasible controllability in microscales are the most prominent advantages that researchers strive for. Nevertheless, it is always difficult to fulfill all in one solid-state system. Two-dimensional electron systems(2DESs) floating above the superfluid helium surfaces are thought to meet these three requirements simultaneously, ensured by the atomic smoothness of surfaces and the electric neutrality of helium. Here we report our recent work in preparing, characterizing, and manipulating 2DESs on superfluid helium. We realized a tunability of electron density over one order of magnitude and tuned their transport properties by varying electron distribution and measurement frequency. The work we engage in is crucial for advancing research in many-body physics and for development of single-electron quantum devices rooted in these electron systems. 展开更多
关键词 electron SMOOTHNESS dimensions
下载PDF
Spectra of the Energy Operator of Four-Electron Systems in the Impurity Hubbard Model. Triplet State 被引量:1
3
作者 S. M. Tashpulatov R. T. Parmanova 《Journal of Applied Mathematics and Physics》 2021年第11期2776-2795,共20页
We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensi... We consider the energy operator of four-electron systems in an impurity Hubbard model and investigated the structure of essential spectra and discrete spectrum of the system in the first triplet state in a one-dimensional lattice. For investigation the structure of essential spectra and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of four-electron systems in an impurity Hubbard model. The investigations show that there are such cases: 1) the essential spectrum of the system consists of the union of no more than eight segments, and the discrete spectrum of the system consists of no more than three eigenvalues;2) the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues;3) the essential spectrum of the system consists of the union of no more than three segments, and the discrete spectrum of the system is the empty set. Consequently, the essential spectrum of the system consists of the union of no more than sixteen segments, and the discrete spectrum of the system consists of no more than eleven eigenvalues. 展开更多
关键词 Hubbard Model Essential Spectrum Discrete Spectrum Four electron systems Quintet State Triplet State Singlet State SPECTRA
下载PDF
The Structure of Essential Spectra and Discrete Spectrum of Three-Electron Systems in the Impurity Hubbard Model—Quartet State 被引量:3
4
作者 S. M. Tashpulatov 《Journal of Applied Mathematics and Physics》 2021年第6期1391-1421,共31页
We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy... We consider a three-electron system in the Impurity Hubbard model with a coupling between nearest-neighbors. Our research aim consists of studying the structure of essential spectrum and discrete spectra of the energy operator of three-electron systems in the impurity Hubbard model in the quartet state of the system in a <em>v</em>-dimensional lattice. We have reduced the study of the spectrum of the three-electron quartet state operator in the impurity Hubbard model to the study of the spectrum of a simpler operator. We proved the essential spectra of the three-electron systems in the Impurity Hubbard model in the quartet state is the union of no more than six segments, and the discrete spectrum of the system is consists of no more than four eigenvalues. 展开更多
关键词 Essential Spectrum Discrete Spectrum Three-electron system Local Impurity States Impurity Hubbard Model Quartet State Doublet State
下载PDF
Structure of Essential Spectrum and Discrete Spectra of the Energy Operator of Five-Electron Systems in the Hubbard Model. Third and Fourth Doublet States 被引量:1
5
作者 S. M. Tashpulatov 《Journal of Applied Mathematics and Physics》 2020年第12期2886-2918,共33页
We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of essential spectrum and discrete spectrum of the systems in the third and fourth doublet states in a &... We consider a five-electron system in the Hubbard model with a coupling between nearest-neighbors. The structure of essential spectrum and discrete spectrum of the systems in the third and fourth doublet states in a <em>v</em>-dimensional lattice is investigated. We prove that the essential spectrum of the system in a third doublet state consists is the union of at most four segments, and discrete spectrum of the system is empty. We show that the essential spectrum of the system in a fourth doublet state consists of the union of at most seven segments, and discrete spectrum of the system consists of no more than one point. 展开更多
关键词 Essential Spectrum Discrete Spectrum Five-electron system Bound State Anti-Bound State Hubbard Model Doublet State Sextet State Quartet State
下载PDF
Spectra of the Energy Operator of Two-Electron System in the Impurity Hubbard Model 被引量:1
6
作者 Sa’dulla Tashpulatov 《Journal of Applied Mathematics and Physics》 2022年第9期2743-2779,共37页
We consider two-electron systems for the impurity Hubbard Model and investigate the spectrum of the system in a singlet state for the v-dimensional integer valued lattice Z<sup>v</sup>. We proved the essen... We consider two-electron systems for the impurity Hubbard Model and investigate the spectrum of the system in a singlet state for the v-dimensional integer valued lattice Z<sup>v</sup>. We proved the essential spectrum of the system in the singlet state is consists of union of no more then three intervals, and the discrete spectrum of the system in the singlet state is consists of no more then five eigenvalues. We show that the discrete spectrum of the system in the triplet and singlet states differ from each other. In the singlet state the appear additional two eigenvalues. In the triplet state the discrete spectrum of the system can be empty set, or is consists of one-eigenvalue, or is consists of two eigenvalues, or is consists of three eigenvalues. For investigation the structure of essential spectra and discrete spectrum of the energy operator of two-electron systems in an impurity Hubbard model, for which the momentum representation is convenient. In addition, we used the tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces and described the structure of essential spectrum and discrete spectrum of the energy operator of two-electron systems in an impurity Hubbard model. 展开更多
关键词 Two-electron system Impurity Hubbard Model Singlet State Triplet State Essential Spectra Discrete Spectrum
下载PDF
Structure of Essential Spectra and Discrete Spectrum of the Energy Operator of Six-Electron Systems in the Hubbard Model. First Quintet and First Singlet States
7
作者 S. M. Tashpulatov 《Journal of Applied Mathematics and Physics》 2022年第11期3424-3461,共38页
We consider the energy operator of six-electron systems in the Hubbard model and investigate the structure of essential spectra and discrete spectrum of the system in the first quintet and first singlet states in the ... We consider the energy operator of six-electron systems in the Hubbard model and investigate the structure of essential spectra and discrete spectrum of the system in the first quintet and first singlet states in the v-dimensional lattice. 展开更多
关键词 Hubbard Model Essential Spectrum Discrete Spectrum Six electron systems Octet State Singlet State Quintet State
下载PDF
Effects of donor density and temperature on electron systems in AlGaN/AlN/GaN and AlGaN/GaN structures 被引量:1
8
作者 张金风 王冲 +1 位作者 张进城 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第5期1060-1066,共7页
It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN... It was reported by Shen et al that the two-dimensional electron gas (2DEG) in an AlGaN/AlN/GaN structure showed high density and improved mobility compared with an AlGaN/GaN structure, but the potential of the AlGaN/AlN/GaN structure needs further exploration. By the self-consistent solving of one-dimensional Schroedinger- Poisson equations, theoretical investigation is carried out about the effects of donor density (0-1×10^19 cm^-3) and temperature (50-500 K) on the electron systems in the AlGaN/AlN/GaN and AlGaN/GaN structures. It is found that in the former structure, since the effective △Ec is larger, the efficiency with which the 2DEG absorbs the electrons originating from donor ionization is higher, the resistance to parallel conduction is stronger, and the deterioration of 2DEG mobility is slower as the donor density rises. When temperature rises, the three-dimensional properties of the whole electron system become prominent for both of the structures, but the stability of 2DEG is higher in the former structure, which is also ascribed to the larger effective △Ec. The Capacitance-Voltage (C - V) carrier density profiles at different temperatures are measured for two Schottky diodes on the considered heterostructure samples separately, showing obviously different 2DEG densities. And the temperature-dependent tendency of the experimental curves agrees well with our calculations. 展开更多
关键词 ALGAN/ALN/GAN ALGAN/GAN two-dimensional electron gas C - V carrier density profile
下载PDF
A New Method for Calculations of Two-Electron Systems in Magnetic Field
9
作者 QIAO Hao-xue LIU Lian-jun +1 位作者 ZHANG Zhe-hua LI Bai-wen 《Chinese Physics Letters》 SCIE CAS CSCD 1999年第9期638-640,共3页
A method suitable for two-electron systems in a range running from low to high fields is given.ML=-1 triplet state of H-ion and He atom are used to introduce the new means.All the matrix elements in our calculations a... A method suitable for two-electron systems in a range running from low to high fields is given.ML=-1 triplet state of H-ion and He atom are used to introduce the new means.All the matrix elements in our calculations are formulated as products of simple,independent one-dimensional numerical integrals and analytic ones.As a result,lower energies compared to those obtained with spherical coordinates in low fields,and cylindrical coordinates in high fields are presented. 展开更多
关键词 COORDINATES electron CYLINDRICAL
下载PDF
Correlated-Electron Systems and High-Temperature Superconductivity
10
作者 Takashi Yanagisawa Mitake Miyazaki Kunihiko Yamaji 《Journal of Modern Physics》 2013年第6期33-64,共32页
We present recent theoretical results on superconductivity in correlated-electron systems, especially in the two-dimensional Hubbard model and the three-band d-p model. The mechanism of superconductivity in high-tempe... We present recent theoretical results on superconductivity in correlated-electron systems, especially in the two-dimensional Hubbard model and the three-band d-p model. The mechanism of superconductivity in high-temperature superconductors has been extensively studied on the basis of various electronic models and also electron-phonon models. In this study, we investigate the properties of superconductivity in correlated-electron systems by using numerical methods such as the variational Monte Carlo method and the quantum Monte Carlomethod. The Hubbard model is one of basic models for strongly correlated electron systems, and is regarded as the model of cuprate high temperature superconductors. The d-p model is more realistic model for cuprates. The superconducting condensation energy obtained by adopting the Gutzwiller ansatz is in reasonable agreement with the condensation energy estimated for YBa2Cu3O7. We show the phase diagram of the ground state using this method. We have further investigated the stability of striped and checkerboard states in the under-doped region. Holes doped in a half-filled square lattice lead to an incommensurate spin and charge density wave. The relationship of the hole density x and incommensurability δ, δ~x, is satisfied in the lower doping region, as indicated by the variationalMonte Carlocalculations for the two-dimensional Hubbard model. A checkerboard-like charge-density modulation with a roughly period has also been observed by scanning tunneling microscopy experiments in Bi2212 and Na-CCOC compounds. We have performed a variational Monte Carlo simulation on a two-dimensional t-t′-t″- U Hubbard model with a Bi-2212 type band structure and found that the period checkerboard spin modulation, that is characterized by multi Q vectors, is indeed stabilized. We have further performed an investigation by using a quantumMonte Carlomethod, which is a numerical method that can be used to simulate the behavior of correlated electron systems. We present a new algorithm of the quantum Monte Carlo diagonalization that is a method for the evaluation of expectation value without the negative sign problem. We compute pair correlation functions and show that pair correlation is indeed enhanced with hole doping. 展开更多
关键词 High-Temperature SUPERCONDUCTIVITY STRONGLY CORRELATED electronS Monte Carlo Methods HUBBARD Model CONDENSATION Energy Pair-Correlation Function
下载PDF
Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
11
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay J.Bandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim... Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues. 展开更多
关键词 Biodegradable elastomer Conductive polymer composites Biomedical device Transient electronics
下载PDF
Small-signal Stability Criteria in Power Electronics-dominated Power Systems:A Comparative Review
12
作者 Qifan Chen Siqi Bu Chi Yung Chung 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1003-1018,共16页
To tackle emerging power system small-signal stability problems such as wideband oscillations induced by the large-scale integration of renewable energy and power electronics,it is crucial to review and compare existi... To tackle emerging power system small-signal stability problems such as wideband oscillations induced by the large-scale integration of renewable energy and power electronics,it is crucial to review and compare existing small-signal stability analysis methods.On this basis,guidance can be provided on determining suitable analysis methods to solve relevant small-signal stability problems in power electronics-dominated power systems(PEDPSs).Various mature methods have been developed to analyze the small-signal stability of PEDPSs,including eigenvalue-based methods,Routh stability criterion,Nyquist/Bode plot based methods,passivity-based methods,positive-net-damping method,lumped impedance-based methods,bifurcation-based methods,etc.In this paper,the application conditions,advantages,and limitations of these criteria in identifying oscillation frequencies and stability margins are reviewed and compared to reveal and explain connections and discrepancies among them.Especially,efforts are devoted to mathematically proving the equivalence between these small-signal stability criteria.Finally,the performance of these criteria is demonstrated and compared in a 4-machine 2-area power system with a wind farm and an IEEE 39-bus power system with 3 wind farms. 展开更多
关键词 Impedance-based method oscillation analysis power electronic converter power electronics-dominated power system renewable power generation small-signal stability
原文传递
Reform of the Comprehensive Practical Course System for Mechanical and Electronic Engineering Majors Under the Background of New Engineering
13
作者 Yali Yu Keyi Wang Yong Yang 《Journal of Contemporary Educational Research》 2024年第2期85-90,共6页
Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technologi... Under the background of new engineering,the reform of the comprehensive practical course system for mechanical and electronic engineering majors actively responds to the challenges posed by the new round of technological revolution and industrial transformation to higher education,cultivating top-notch innovative intellectuals with comprehensive engineering qualities,meeting the requirements of being able to solve complex engineering problems rather than just cognitive capabilities,forming two core courses through reconstructing and reshaping the core courses of the major.The core courses include Drive,Measurement,and Control I and Drive,Measurement,and Control II,which highlight the comprehensive framework of mechanical and electronic engineering professional knowledge,continuing the comprehensive practical course system based on the unity of knowledge and practice,following the trend of new engineering,highlighting the practicality of professional innovation,assisting engineering education reform,and promoting high-quality development of new engineering professionals cultivation. 展开更多
关键词 Comprehensive engineering quality Mechanical and electronic Engineering Practical course system New engineering
下载PDF
Electronics system for the cosmic X-ray polarization detector 被引量:2
14
作者 Hui Wang Dong Wang +13 位作者 Ran Chen Yan-Wei Kui Hong-Bang Liu Zong-Wang Fan Huan-Bo Feng Jin Li Jun Liu Qian Liu Shi Chen Yuan-Kang Yang Zhuo Zhou Zi-Li Li Shi-Qiang Zhou Ni Fang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第5期1-12,共12页
This study presents an electronics system for cosmic X-ray polarization detection(CXPD).The CXPD was designed as a high-sensitivity soft X-ray polarimeter with a measurement energy range of 2-10 keV carried by a CubeS... This study presents an electronics system for cosmic X-ray polarization detection(CXPD).The CXPD was designed as a high-sensitivity soft X-ray polarimeter with a measurement energy range of 2-10 keV carried by a CubeSat.A stable and functionally complete electronics system under power and space constraints is a key challenge.The complete CXPD electronics system(CXPDES)comprises hardware and firmware.CXPDES adopts a three-layer electronic board structure based on functionality and available space.Two gas pixel detectors(GPDs)were placed on the top layer board,and CXPDES provided the GPDs with voltages up to-4000 V.Each GPD signal was digitized,compressed,encoded,and stored before being transmitted to the ground.The CXPDES provided stable and high-speed communication based on a scheme that separated command and data transmission,and it supports the CXPDES in-orbit upgrade.In addition,environmental monitors,silicon photomultiplier(SiPM)triggers,power management,GPDs configuration,and mode switches were included in the overall operating logic of the CXPDES.The results obtained by testing the CXPDES showed that it satisfied all the requirements of CXPD.The CXPDES provides design experience and technological readiness for future large-area X-ray polarimetry missions. 展开更多
关键词 X-ray polarimeter electronICS CUBESAT Gas pixel detector FPGA
下载PDF
3D‑Printed Carbon‑Based Conformal Electromagnetic Interference Shielding Module for Integrated Electronics 被引量:3
15
作者 Shaohong Shi Yuheng Jiang +5 位作者 Hao Ren Siwen Deng Jianping Sun Fangchao Cheng Jingjing Jing Yinghong Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期87-101,共15页
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni... Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics. 展开更多
关键词 3D printing Carbon-based nanoparticles Conformal electromagnetic interference shielding Integrated electronics
下载PDF
An Environment‑Tolerant Ion‑Conducting Double‑Network Composite Hydrogel for High‑Performance Flexible Electronic Devices 被引量:2
16
作者 Wenchao Zhao Haifeng Zhou +3 位作者 Wenkang Li Manlin Chen Min Zhou Long Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期352-369,共18页
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i... High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications. 展开更多
关键词 Ionic liquids Double-network hydrogels Temperature tolerance Multifunctionality Flexible electronic devices
下载PDF
Artificial Intelligence Meets Flexible Sensors:Emerging Smart Flexible Sensing Systems Driven by Machine Learning and Artificial Synapses 被引量:1
17
作者 Tianming Sun Bin Feng +8 位作者 Jinpeng Huo Yu Xiao Wengan Wang Jin Peng Zehua Li Chengjie Du Wenxian Wang Guisheng Zou Lei Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期235-273,共39页
The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,f... The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,flexible sensors are evolving from a single sensing element to a smarter system,which is capable of highly efficient acquisition,analysis,and even perception of vast,multifaceted data.While challenging from a manual perspective,the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm(machine learning)and the framework(artificial synapses)level.This review presents the recent progress of the emerging AI-driven,intelligent flexible sensing systems.The basic concept of machine learning and artificial synapses are introduced.The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed,which significantly advances the applications such as flexible sensory systems,soft/humanoid robotics,and human activity monitoring.As two of the most profound innovations in the twenty-first century,the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings. 展开更多
关键词 Flexible electronics Wearable electronics Neuromorphic MEMRISTOR Deep learning
下载PDF
A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics 被引量:1
18
作者 Qian Wang Yanyan Li +7 位作者 Yong Lin Yuping Sun Chong Bai Haorun Guo Ting Fang Gaohua Hu Yanqing Lu Desheng Kong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期120-133,共14页
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite... Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems. 展开更多
关键词 Stretchable electronics Epidermal electronics Silver nanowire Conductive nanocomposites HYDROGEL
下载PDF
Investigation on taste characteristics and sensory perception of soft-boiled chicken during oral processing based on electronic tongue and electronic nose 被引量:1
19
作者 Na Xu Xianming Zeng +3 位作者 Peng Wang Xing Chen Xinglian Xu Minyi Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期313-326,共14页
The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual... The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people. 展开更多
关键词 Oral processing CHICKEN electronic tongue electronic nose
下载PDF
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution 被引量:1
20
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation electronic interaction SUPERHYDROPHILICITY Oxygen evolution reaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部