Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport...Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.展开更多
Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress...Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress.Nonetheless,additional research is required to reduce the nonradiative recombination to realize the full potential of CsPbI_(3).Here,the diffusion of Cs ions participating in ion exchange is proposed to be an important factor responsible for the bulk defects inγ-CsPbI_(3)perovskite.Calculations based on first-principles density functional theory reveal that the[PbI_(6)]^(4-)octahedral tilt modifies the perovskite crystallographic properties inγ-CsPbI_(3),leading to alterations in its bandgap and crystal strain.In addition,by substituting amorphous barium titanium oxide(a-BaTiO_(3))for TiO_(2)as the electron transport layer,interfacial defects caused by imperfect energy levels between the electron transport layer and perovskite are reduced.High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that a-BaTiO_(3)forms entirely as a single phase,as opposed to Ba-doped TiO_(2)hybrid nanoclusters or separate domains of TiO_(2)and BaTiO_(3)phases.Accordingly,inorganic perovskite solar cells based on the a-BaTiO_(3)electron transport layer achieved a power conversion efficiency of 19.96%.展开更多
Organic light emitting diodes (OLEDs) incorporating an n-doping transport layer comprised of 8-hydroxy-quin- olinato lithium (Liq) doped into 4' 7- diphyenyl-1,10-phenanthroline (BPhen) as ETL and a p-doping tr...Organic light emitting diodes (OLEDs) incorporating an n-doping transport layer comprised of 8-hydroxy-quin- olinato lithium (Liq) doped into 4' 7- diphyenyl-1,10-phenanthroline (BPhen) as ETL and a p-doping transport layer that includes tetrafluro-tetracyano-quinodimethane (F4- TCNQ) doped into 4,4′, 4″-tris (3-methylphenylphenylamono) triphe- nylamine (m-MTDATA) are demonstrated. In order to examine the improvement in the conductivity of transport layers, hole-only and electron-only devices are fabricated. The current and power efficiency Of organic light-emitting diodes are improved significantly after introducing an n-doping (BPhen:33wt% Liq) layer as an electron transport layer (ETL) and a p-doping layer composed of m-MTDATA and F4- TCNQ as a hole transport layer (HTL). Compared with the control device (without doping) , the current efficiency and power efficiency of the most efficient device (device C) are enhanced by approximately 51% and 89% ,respectively, while driving voltage is reduced by 29%. This improvement is attributed to the improved conductivity of the transport layers that leads to efficient charge balance in the emission zone.展开更多
Using a time-dependent quantum-kinetic simulation for the non-equilibrium electron transport properties of double-barrier devices, we have investigated and analyzed the effects of the relaxation time on electron trans...Using a time-dependent quantum-kinetic simulation for the non-equilibrium electron transport properties of double-barrier devices, we have investigated and analyzed the effects of the relaxation time on electron transport properties in this kind of low dimensional structure. The results show that the relaxation time, which comes from the electron-phonon and electron-defect interactions,greatly affects the current-voltage curves,including the plateau-like gradient and hysteresis width of the current.展开更多
The current demand growth of new components capable of operating at high power, high frequency, high temperatures and convergence towards miniaturization has lead to the development of new fields of nanotechnology bas...The current demand growth of new components capable of operating at high power, high frequency, high temperatures and convergence towards miniaturization has lead to the development of new fields of nanotechnology based on II-VI semiconductor Interest in nanostructure:s based on II-VI semiconductor narrow gap containing mercury (such as super lattices HgTe/CdTe) was due to their advantages over alloys with cadmium telluride Mercury (MCT: HgCdTe). The ternary alloy is a semiconductor band-gap direct, in that work the main interest is about the ternary compound. The results obtained are very satisfactory, they are compared with experimental results, and are in good agreement. These results are very promising and open new perspectives for the realization of solar cells and applications in the field of sensors.展开更多
Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the re...Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the regulation mechanism of related photosynthesis characteristics remains largely unclear. Here, four light qualities treatments (300 μmol m-2 s-1) including white fluorescent light (FL), blue monochromatic light (B, 440 nm), red monochromatic light (R, 660 nm), and a combination of red and blue light (RB, R:B=8:1) were carried out to investigate their effects on the activity of photosystem II (PSII) and photosystem I (PSI), and photosynthetic electron transport capacity in the leaves of cucumber (Cucumis sativus L.) seedlings. The results showed that compared to the FL treatment, the R treatment significantly limited electron transport rate in PSII (ETR11) and in PSI (ETR1) by 79.4 and 66.3%, respectively, increased non-light induced non-photochemical quenching in PSII (q^No) and limitation of donor side in PSI (φND) and reduced most JIP-test parameters, suggesting that the R treatment induced suboptimal activity of photosystems and inhibited electron transport from PSII donor side up to PSI. However, these suppressions were effectively alleviated by blue light addition (RB). Compared with the R treatment, the RB treatment significantly increased ETR, and ETR1 by 176.9 and 127.0%, respectively, promoted photosystems activity and enhanced linear electron transport by elevating electron transport from QA to PSI. The B treatment plants exhibited normal photosystems activity and photosynthetic electron transport capacity similar to that of the FL treatment. It was concluded that blue light is more essential than red light for normal photosynthesis by mediating photosystems activity and photosynthetic electron transport capacity.展开更多
Electron transport system (ETS ) / dehydrogenase activity in a paddy field soil was measured under a variety of incubation conditions using the reduction of 2- (p-iodophenyl- 3- (p-nitrophenyl ) -5- phellyl tetrazoliu...Electron transport system (ETS ) / dehydrogenase activity in a paddy field soil was measured under a variety of incubation conditions using the reduction of 2- (p-iodophenyl- 3- (p-nitrophenyl ) -5- phellyl tetrazolium chloride (INT) to iodonitrotetrazolium formazan (INTF). The results exhibited a high positive correlation between the ETS activity and the incubation temperature and soil moisture. Dehydrogenase/ETS activity displayed a negative correlation with insecticide concentrations, and the activity affected adversely as the concentration of the insecticide increased. The higher doses, 5 and 10 field rates (1 field rate ~ 1500 mL ha-1), of insecticide significantly inhibited ETS activity, while lower rates failed to produce any significant reducing effect. Inorganic N (as urea) of concentrations from 0 to 100 ug N g-1 soil showed a positive response to ETS activity. However, at concentrations of 200 and 400 ug N g-1, the activity was reduced significantly.展开更多
Non-local electron transport in laser-produced plasmas under inertial confinement fusion (ICF) conditions is studied based on Fokker-Planck (FP) and hydrodynamic simulations. A comparison between the classical Spi...Non-local electron transport in laser-produced plasmas under inertial confinement fusion (ICF) conditions is studied based on Fokker-Planck (FP) and hydrodynamic simulations. A comparison between the classical Spitzer-Harm (SH) transport model and non-local transport models has been made. The result shows that among those non-local models the Epperlein and Short (ES) model of heat flux is in reasonable agreement with the FP simulation in overdense region. However, the non-local models are invalid in the hot underdense plasmas. Hydrodynamic simulation is performed with the flux limiting model and the non-local model, separately. The simulation results show that in the underdense region of the laser-produced plasmas the temperature given by the flux limiting model is significantly higher than that given with the non-local model.展开更多
The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporou...The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of inter- facial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices.展开更多
The transport of sub-picosecond laser-driven fast electrons in nanopore array targets is studied.Attributed to the generation of micro-structured magnetic fields,most fast electron beams are proven to be effectively g...The transport of sub-picosecond laser-driven fast electrons in nanopore array targets is studied.Attributed to the generation of micro-structured magnetic fields,most fast electron beams are proven to be effectively guided and restricted during the propagation.Different transport patterns of fast electrons in the targets are observed in experiments and reproduced by particle-in-cell simulations,representing two components:initially collimated low-energy electrons in the center and high-energy scattering electrons turning into surrounding annular beams.The critical energy for confined electrons is deduced theoretically.The electron guidance and confinement by the nano-structured targets offer a technological approach to manipulate and optimize the fast electron transport by properly modulating pulse parameters and target design,showing great potential in many applications including ion acceleration,microfocus x-ray sources and inertial confinement fusion.展开更多
CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas m...CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.展开更多
Recently, the Dirac and Weyl semimetals have attracted extensive attention in condensed matter physics due to both the fundamental interest and the potential application of a new generation of electronic devices. Here...Recently, the Dirac and Weyl semimetals have attracted extensive attention in condensed matter physics due to both the fundamental interest and the potential application of a new generation of electronic devices. Here we review the exotic electrical transport phenomena in Dirac andWeyl semimetals. Section 1 is a brief introduction to the topological semimetals(TSMs). In Section 2 and Section 3, the intriguing transport phenomena in Dirac semimetals(DSMs) andWeyl semimetals(WSMs) are reviewed, respectively. The most widely studied Cd_3A_(s2) and the TaAs family are selected as representatives to show the typical properties of DSMs and WSMs, respectively. Beyond these systems, the advances in other TSM materials,such as ZrTe_5 and the MoTe_2 family, are also introduced. In Section 4, we provide perspectives on the study of TSMs especially on the magnetotransport investigations.展开更多
The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells(PSCs), most of the common elec...The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells(PSCs), most of the common electron transport layer(ETL) needs to be annealed for improving the optoelectronic properties,while conventional flexible substrates could barely stand the high temperature. Herein, a vacuumassisted annealing SnO_(2) ETL at low temperature(100℃) is utilized in flexible PSCs and achieved high efficiency of 20.14%. Meanwhile, the open-circuit voltage(V_(oc)) increases from 1.07 V to 1.14 V. The flexible PSCs also show robust bending stability with 86.8% of the initial efficiency is retained after 1000 bending cycles at a bending radius of 5 mm. X-ray photoelectron spectroscopy(XPS), atomic force microscopy(AFM), and contact angle measurements show that the density of oxygen vacancies, the surface roughness of the SnO_(2) layer, and film hydrophobicity are significantly increased, respectively. These improvements could be due to the oxygen-deficient environment in a vacuum chamber, and the rapid evaporation of solvents. The proposed vacuum-assisted low-temperature annealing method not only improves the efficiency of flexible PSCs but is also compatible and promising in the large-scale commercialization of flexible PSCs.展开更多
Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the ...Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the single-junction limit, while the performance of N-I-P type PSTSCs is far below the theoretical value. Here, we developed a composite electron transport layer for N-I-P type monolithic PSTSCs with enhanced open-circuit voltage(VOC) and power conversion efficiency(PCE). Lithium chloride(Li Cl) was added into the tin oxide(SnO_(2)) precursor solution, which simultaneously passivated the defects and increased the electron injection driving force at the electron transfer layer(ETL)/perovskite interface.Eventually, we achieved monolithic PSTSCs with an efficiency of 25.42% and V_(OC) of 1.92 V, which is the highest PCE and VOCin N-I-P type perovskite/Si tandem devices. This work on interface engineering for improving the PCE of monolithic PSTSCs may bring a new hot point about perovskite-based tandem devices.展开更多
A novel POSS-based organic/inorganic hybrid covalently attached at molecular level, 2-(4-(allyloxy)phenyl)-5-(4-(octyloxy)phenyl)-1,3,4-oxadiazole-POSS (6) (abbreviated as oxadiazole-POSS) was synthesized ...A novel POSS-based organic/inorganic hybrid covalently attached at molecular level, 2-(4-(allyloxy)phenyl)-5-(4-(octyloxy)phenyl)-1,3,4-oxadiazole-POSS (6) (abbreviated as oxadiazole-POSS) was synthesized by Pt(dcp) catalyst. The hybrid was soluble in common organic solvents such as CHCl3, toluene, C2H4Cl2, and THF. Its structures and properties were characterized and evaluated with FTIR, 1^H NMR, 13^C NMR,29^Si NMR, EA, TGA, DSC, GPC, and CV, respectively. The results show that the novel hybrid possesses high thermal stability and good electron injection ability.展开更多
Based on the self-consistent electron dynamic transport theory for multi-probe mesoscopic systems, we calculate the distribution of internal potential, charge density, and ac conductance of a two-probe mesoscopic cond...Based on the self-consistent electron dynamic transport theory for multi-probe mesoscopic systems, we calculate the distribution of internal potential, charge density, and ac conductance of a two-probe mesoscopic conductor with wide trapezoid reservoirs, and study the contact effect. The results show that including the contact effect can make a significant difference to the frequency-dependent electron transport properties. In the nonzero frequency case, the internal potential and the charge density are complex with extremely small imaginary parts. Importantly, the imaginary part of the charge density gives rise to a real ac conductance (admittance), which corresponds to the charge-relaxation resistance.展开更多
At the Earth's magnetopause, the electron transport due to kinetic Alfvén waves(KAWs) is investigated in an ion-scale flux rope by the Magnetospheric Multiscale mission. Clear electron dropout around 90° ...At the Earth's magnetopause, the electron transport due to kinetic Alfvén waves(KAWs) is investigated in an ion-scale flux rope by the Magnetospheric Multiscale mission. Clear electron dropout around 90° pitch angle is observed throughout the flux rope, where intense KAWs are identified. The KAWs can effectively trap electrons by the wave parallel electric field and the magnetic mirror force, allowing electrons to undergo Landau resonance and be transported into more field-aligned directions. The pitch angle range for the trapped electrons is estimated from the wave analysis, which is in good agreement with direct pitch angle measurements of the electron distributions. The newly formed beam-like electron distribution is unstable and excites whistler waves,as revealed in the observations. We suggest that KAWs could be responsible for the plasma depletion inside a flux rope by this transport process, and thus be responsible for the formation of a typical flux rope.展开更多
The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)...The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level.展开更多
In this study the performance of organic light-emitting diodes (OLEDs) are enhanced significantly, which is based on dual electron transporting layers (13phen/CuPc). By adjusting the thicknesses of Bphen and CuPc,...In this study the performance of organic light-emitting diodes (OLEDs) are enhanced significantly, which is based on dual electron transporting layers (13phen/CuPc). By adjusting the thicknesses of Bphen and CuPc, the maximal luminescence, the maximal current efficiency, and the maximal power efficiency of the device reach 17570 cd/m^2 at 11 V, and 5.39 cd/A and 3.39 lm/W at 3.37 mA/cm^2 respectively, which are enhanced approximately by 33.4%, 39.3%, and 68.9%, respectively, compared with those of the device using Bphen only for an electron transporting layer. These results may provide some valuable references for improving the electron injection and the transportation of OLED.展开更多
Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates fo...Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates for perovskite solar cells(PSCs).However,the conjugated rigid plane structure of PDI units result in PDI-based ETMs tending to form large aggregates,limiting their application and photovoltaic performance.In this study,to restrict aggregation and further enhance the photovoltaic performance of PDI-type ETMs,two PDI-based ETMs,termed PDO-PDI2(dimer)and PDO-PDI3(trimer),were constructed by introducing a phenothiazine 5,5-dioxide(PDO)core building block.The research manifests that the optoelectronic properties and film formation property of PDO-PDI2 and PDO-PDI3 were deeply affected by the molecular spatial configuration.Applied in PSCs,PDO-PDI3 with threedimensional spiral molecular structure,exhibits superior electron extraction and transport properties,further achieving the best PCE of 18.72%and maintaining 93%of its initial efficiency after a 720-h aging test under ambient conditions.展开更多
基金financially supported by the project of the National Natural Science Foundation of China(52202115 and 52172101)the China Postdoctoral Science Foundation(2022M722586)+2 种基金the Natural Science Foundation of Chongqing,China(CSTB2022NSCQ-MSX1085)the Shaanxi Science and Technology Innovation Team(2023-CX-TD-44)the Fundamental Research Funds for the Central Universities(3102019JC005 and G2022KY0604)。
文摘Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resource from the Ministry of Trade,Industry&Energy,Republic of Korea(20213091010020)the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET)and Korea Smart Farm R&D Foundation(KosFarm)through Smart Farm Innovation Technology Development Programfunded by Ministry of Agriculture,Food and Rural Affairs(MAFRA),Ministry of Science and ICT(MSIT),Rural Development Administration(RDA)(421036-03)
文摘Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress.Nonetheless,additional research is required to reduce the nonradiative recombination to realize the full potential of CsPbI_(3).Here,the diffusion of Cs ions participating in ion exchange is proposed to be an important factor responsible for the bulk defects inγ-CsPbI_(3)perovskite.Calculations based on first-principles density functional theory reveal that the[PbI_(6)]^(4-)octahedral tilt modifies the perovskite crystallographic properties inγ-CsPbI_(3),leading to alterations in its bandgap and crystal strain.In addition,by substituting amorphous barium titanium oxide(a-BaTiO_(3))for TiO_(2)as the electron transport layer,interfacial defects caused by imperfect energy levels between the electron transport layer and perovskite are reduced.High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that a-BaTiO_(3)forms entirely as a single phase,as opposed to Ba-doped TiO_(2)hybrid nanoclusters or separate domains of TiO_(2)and BaTiO_(3)phases.Accordingly,inorganic perovskite solar cells based on the a-BaTiO_(3)electron transport layer achieved a power conversion efficiency of 19.96%.
文摘Organic light emitting diodes (OLEDs) incorporating an n-doping transport layer comprised of 8-hydroxy-quin- olinato lithium (Liq) doped into 4' 7- diphyenyl-1,10-phenanthroline (BPhen) as ETL and a p-doping transport layer that includes tetrafluro-tetracyano-quinodimethane (F4- TCNQ) doped into 4,4′, 4″-tris (3-methylphenylphenylamono) triphe- nylamine (m-MTDATA) are demonstrated. In order to examine the improvement in the conductivity of transport layers, hole-only and electron-only devices are fabricated. The current and power efficiency Of organic light-emitting diodes are improved significantly after introducing an n-doping (BPhen:33wt% Liq) layer as an electron transport layer (ETL) and a p-doping layer composed of m-MTDATA and F4- TCNQ as a hole transport layer (HTL). Compared with the control device (without doping) , the current efficiency and power efficiency of the most efficient device (device C) are enhanced by approximately 51% and 89% ,respectively, while driving voltage is reduced by 29%. This improvement is attributed to the improved conductivity of the transport layers that leads to efficient charge balance in the emission zone.
文摘Using a time-dependent quantum-kinetic simulation for the non-equilibrium electron transport properties of double-barrier devices, we have investigated and analyzed the effects of the relaxation time on electron transport properties in this kind of low dimensional structure. The results show that the relaxation time, which comes from the electron-phonon and electron-defect interactions,greatly affects the current-voltage curves,including the plateau-like gradient and hysteresis width of the current.
文摘The current demand growth of new components capable of operating at high power, high frequency, high temperatures and convergence towards miniaturization has lead to the development of new fields of nanotechnology based on II-VI semiconductor Interest in nanostructure:s based on II-VI semiconductor narrow gap containing mercury (such as super lattices HgTe/CdTe) was due to their advantages over alloys with cadmium telluride Mercury (MCT: HgCdTe). The ternary alloy is a semiconductor band-gap direct, in that work the main interest is about the ternary compound. The results obtained are very satisfactory, they are compared with experimental results, and are in good agreement. These results are very promising and open new perspectives for the realization of solar cells and applications in the field of sensors.
基金supported by the Special Fund for Nonprofit Industry (Agriculture) Research Project (201303014)Earmarked Fund for Beijing Fruit Vegetable Innovation Team Project of Modern Agro-industry Technology Research System (GCTDZJ2014033007) in China
文摘Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the regulation mechanism of related photosynthesis characteristics remains largely unclear. Here, four light qualities treatments (300 μmol m-2 s-1) including white fluorescent light (FL), blue monochromatic light (B, 440 nm), red monochromatic light (R, 660 nm), and a combination of red and blue light (RB, R:B=8:1) were carried out to investigate their effects on the activity of photosystem II (PSII) and photosystem I (PSI), and photosynthetic electron transport capacity in the leaves of cucumber (Cucumis sativus L.) seedlings. The results showed that compared to the FL treatment, the R treatment significantly limited electron transport rate in PSII (ETR11) and in PSI (ETR1) by 79.4 and 66.3%, respectively, increased non-light induced non-photochemical quenching in PSII (q^No) and limitation of donor side in PSI (φND) and reduced most JIP-test parameters, suggesting that the R treatment induced suboptimal activity of photosystems and inhibited electron transport from PSII donor side up to PSI. However, these suppressions were effectively alleviated by blue light addition (RB). Compared with the R treatment, the RB treatment significantly increased ETR, and ETR1 by 176.9 and 127.0%, respectively, promoted photosystems activity and enhanced linear electron transport by elevating electron transport from QA to PSI. The B treatment plants exhibited normal photosystems activity and photosynthetic electron transport capacity similar to that of the FL treatment. It was concluded that blue light is more essential than red light for normal photosynthesis by mediating photosystems activity and photosynthetic electron transport capacity.
基金Project supported by the International Rice Research Institute (IRRI) under project of Reversing Trendsof Declining Productiv
文摘Electron transport system (ETS ) / dehydrogenase activity in a paddy field soil was measured under a variety of incubation conditions using the reduction of 2- (p-iodophenyl- 3- (p-nitrophenyl ) -5- phellyl tetrazolium chloride (INT) to iodonitrotetrazolium formazan (INTF). The results exhibited a high positive correlation between the ETS activity and the incubation temperature and soil moisture. Dehydrogenase/ETS activity displayed a negative correlation with insecticide concentrations, and the activity affected adversely as the concentration of the insecticide increased. The higher doses, 5 and 10 field rates (1 field rate ~ 1500 mL ha-1), of insecticide significantly inhibited ETS activity, while lower rates failed to produce any significant reducing effect. Inorganic N (as urea) of concentrations from 0 to 100 ug N g-1 soil showed a positive response to ETS activity. However, at concentrations of 200 and 400 ug N g-1, the activity was reduced significantly.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10375064, 10575102, 10625523), and the National High Technology Inertial Confinement Fusion Foundation of China.
文摘Non-local electron transport in laser-produced plasmas under inertial confinement fusion (ICF) conditions is studied based on Fokker-Planck (FP) and hydrodynamic simulations. A comparison between the classical Spitzer-Harm (SH) transport model and non-local transport models has been made. The result shows that among those non-local models the Epperlein and Short (ES) model of heat flux is in reasonable agreement with the FP simulation in overdense region. However, the non-local models are invalid in the hot underdense plasmas. Hydrodynamic simulation is performed with the flux limiting model and the non-local model, separately. The simulation results show that in the underdense region of the laser-produced plasmas the temperature given by the flux limiting model is significantly higher than that given with the non-local model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176044 and 11074224)the Science and Technology Project for Innovative Scientist of Henan Province,China(Grant No.1142002510017)the Science and Technology Project on Key Problems of Henan Province,China(Grant No.082101510007)
文摘The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of inter- facial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0401100)the Science and Technology on Plasma Physics Laboratory(Grant Nos.6142A04180201 and JCKYS2020212006)+1 种基金National Natural Science Foundation of China(Grant No.11975214)the Science Challenge Program(Grant Nos.TZ2016005 and TZ2018005)
文摘The transport of sub-picosecond laser-driven fast electrons in nanopore array targets is studied.Attributed to the generation of micro-structured magnetic fields,most fast electron beams are proven to be effectively guided and restricted during the propagation.Different transport patterns of fast electrons in the targets are observed in experiments and reproduced by particle-in-cell simulations,representing two components:initially collimated low-energy electrons in the center and high-energy scattering electrons turning into surrounding annular beams.The critical energy for confined electrons is deduced theoretically.The electron guidance and confinement by the nano-structured targets offer a technological approach to manipulate and optimize the fast electron transport by properly modulating pulse parameters and target design,showing great potential in many applications including ion acceleration,microfocus x-ray sources and inertial confinement fusion.
基金supported by National Natural Science Foundation of China(No.51337006)。
文摘CF3I gas mixtures have attracted considerable attention as potential environmentally-friendly alternatives to SF6 gas,owing to their excellent insulating performance.This paper attempts to study the CF3I ternary gas mixtures with c-C4F8 and buffer gases N2 and CO2 by considering dielectric strength from electron transport parameters based on the Boltzmann method and synergistic effect analysis,compared with SF6 gas mixtures.The results confirm that the critical electric field strength of CF3I/c-C4F8/70%CO2 is greater than that of 30%SF6/70%CO2 when the CF3I content is greater than 17%.Moreover,a higher content of c-C4F8 decreases the sensitivity of gas mixtures to an electric field,and this phenomenon is more obvious in CF3I/c-C4F8/CO2 gas mixtures.The synergistic effects for CF3I/c-C4F8/70%N2 were most obvious when the c-C4F8 content was approximately 20%,and for CF3I/c-C4F8/70%CO2 when the c-C4F8 content was approximately 10%.On the basis of this research,CF3I/c-C4F8/70%N2 shows better insulation performance when the c-C4F8 content is in the15%–20%range.For CF3I/c-C4F8/70%CO2,when the c-C4F8 content is in the 10%–15%range,the gas mixtures have excellent performance.Hence,these gas systems might be used as alternative gas mixtures to SF6 in high-voltage equipment.
基金Project supported by the National Basic Research Program of China(Grant Nos.2018YFA0305604,2017YFA0303300,and 2013CB934600)the Research Fund for the Doctoral Program of Higher Education(RFDP)of China(Grant No.20130001110003)+2 种基金the Open Project Program of the Pulsed High Magnetic Field Facility(Grant No.PHMFF2015002) at the Huazhong University of Science and Technologythe Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University(Grant No.KF201703)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-2)
文摘Recently, the Dirac and Weyl semimetals have attracted extensive attention in condensed matter physics due to both the fundamental interest and the potential application of a new generation of electronic devices. Here we review the exotic electrical transport phenomena in Dirac andWeyl semimetals. Section 1 is a brief introduction to the topological semimetals(TSMs). In Section 2 and Section 3, the intriguing transport phenomena in Dirac semimetals(DSMs) andWeyl semimetals(WSMs) are reviewed, respectively. The most widely studied Cd_3A_(s2) and the TaAs family are selected as representatives to show the typical properties of DSMs and WSMs, respectively. Beyond these systems, the advances in other TSM materials,such as ZrTe_5 and the MoTe_2 family, are also introduced. In Section 4, we provide perspectives on the study of TSMs especially on the magnetotransport investigations.
基金supported by the National Natural Science Foundation of China(61774046)。
文摘The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells(PSCs), most of the common electron transport layer(ETL) needs to be annealed for improving the optoelectronic properties,while conventional flexible substrates could barely stand the high temperature. Herein, a vacuumassisted annealing SnO_(2) ETL at low temperature(100℃) is utilized in flexible PSCs and achieved high efficiency of 20.14%. Meanwhile, the open-circuit voltage(V_(oc)) increases from 1.07 V to 1.14 V. The flexible PSCs also show robust bending stability with 86.8% of the initial efficiency is retained after 1000 bending cycles at a bending radius of 5 mm. X-ray photoelectron spectroscopy(XPS), atomic force microscopy(AFM), and contact angle measurements show that the density of oxygen vacancies, the surface roughness of the SnO_(2) layer, and film hydrophobicity are significantly increased, respectively. These improvements could be due to the oxygen-deficient environment in a vacuum chamber, and the rapid evaporation of solvents. The proposed vacuum-assisted low-temperature annealing method not only improves the efficiency of flexible PSCs but is also compatible and promising in the large-scale commercialization of flexible PSCs.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFB1500103)the National Natural Science Foundation of China (Grant No.61674084)+4 种基金the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China (Grant No.B16027)the Tianjin Science and Technology Project (Grant No.18ZXJMTG00220)the Fundamental Research Funds for the Central Universities of Nankai University (Grant Nos.63191736,ZB19500204)the Natural Science Foundation of Tianjin (Grant No.20JCQNJC02070)the China Postdoctoral Science Foundation (Grant No.2020T130317)。
文摘Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the single-junction limit, while the performance of N-I-P type PSTSCs is far below the theoretical value. Here, we developed a composite electron transport layer for N-I-P type monolithic PSTSCs with enhanced open-circuit voltage(VOC) and power conversion efficiency(PCE). Lithium chloride(Li Cl) was added into the tin oxide(SnO_(2)) precursor solution, which simultaneously passivated the defects and increased the electron injection driving force at the electron transfer layer(ETL)/perovskite interface.Eventually, we achieved monolithic PSTSCs with an efficiency of 25.42% and V_(OC) of 1.92 V, which is the highest PCE and VOCin N-I-P type perovskite/Si tandem devices. This work on interface engineering for improving the PCE of monolithic PSTSCs may bring a new hot point about perovskite-based tandem devices.
文摘A novel POSS-based organic/inorganic hybrid covalently attached at molecular level, 2-(4-(allyloxy)phenyl)-5-(4-(octyloxy)phenyl)-1,3,4-oxadiazole-POSS (6) (abbreviated as oxadiazole-POSS) was synthesized by Pt(dcp) catalyst. The hybrid was soluble in common organic solvents such as CHCl3, toluene, C2H4Cl2, and THF. Its structures and properties were characterized and evaluated with FTIR, 1^H NMR, 13^C NMR,29^Si NMR, EA, TGA, DSC, GPC, and CV, respectively. The results show that the novel hybrid possesses high thermal stability and good electron injection ability.
基金the National Natural Science Foundation of China(Grant No.11147152)the Natural Science Foundation of Guangdong Province,China(Grant No.S2011040002130)the Youth Program of Zhanjiang Normal University,China(Grant No.L0702)
文摘Based on the self-consistent electron dynamic transport theory for multi-probe mesoscopic systems, we calculate the distribution of internal potential, charge density, and ac conductance of a two-probe mesoscopic conductor with wide trapezoid reservoirs, and study the contact effect. The results show that including the contact effect can make a significant difference to the frequency-dependent electron transport properties. In the nonzero frequency case, the internal potential and the charge density are complex with extremely small imaginary parts. Importantly, the imaginary part of the charge density gives rise to a real ac conductance (admittance), which corresponds to the charge-relaxation resistance.
基金Supported by the National Natural Science Foundation of China under Grant Nos 41474145,41574159,41731070 and 41504114the Frontier Science Foundation of the Chinese Academy of Sciences under Grant No QYZDJ-SSW-JSC028+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA15052500the Specialized Research Fund for State Key Laboratories of China
文摘At the Earth's magnetopause, the electron transport due to kinetic Alfvén waves(KAWs) is investigated in an ion-scale flux rope by the Magnetospheric Multiscale mission. Clear electron dropout around 90° pitch angle is observed throughout the flux rope, where intense KAWs are identified. The KAWs can effectively trap electrons by the wave parallel electric field and the magnetic mirror force, allowing electrons to undergo Landau resonance and be transported into more field-aligned directions. The pitch angle range for the trapped electrons is estimated from the wave analysis, which is in good agreement with direct pitch angle measurements of the electron distributions. The newly formed beam-like electron distribution is unstable and excites whistler waves,as revealed in the observations. We suggest that KAWs could be responsible for the plasma depletion inside a flux rope by this transport process, and thus be responsible for the formation of a typical flux rope.
基金supported by the National Natural Science Foundation of China(61904166,22209145)the Natural Science Foundation of Sichuan Province(2022NSFSC0258)the Fundamental Research Funds for the Central Universities(YJ2021129)。
文摘The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60876046)the Tianjin Natural Science Foundation of China (Grant No. 10JCYBJC01100)
文摘In this study the performance of organic light-emitting diodes (OLEDs) are enhanced significantly, which is based on dual electron transporting layers (13phen/CuPc). By adjusting the thicknesses of Bphen and CuPc, the maximal luminescence, the maximal current efficiency, and the maximal power efficiency of the device reach 17570 cd/m^2 at 11 V, and 5.39 cd/A and 3.39 lm/W at 3.37 mA/cm^2 respectively, which are enhanced approximately by 33.4%, 39.3%, and 68.9%, respectively, compared with those of the device using Bphen only for an electron transporting layer. These results may provide some valuable references for improving the electron injection and the transportation of OLED.
基金financially supported by the National Natural Science Foundation of China(Grants 21805114,21905119)Key Research and Development program of Jiangsu Province(BE2019009-2)+4 种基金Natural Science Foundation of Jiangsu province(BK20180869,BK20180867)China Postdoctoral Science Foundation(2019M651741),Top talents in Jiangsu province(XNY066)the Jiangsu University Foundation(17JDG032,17JDG031)Hightech Research Key laboratory of Zhenjiang(SS2018002)the State Key Laboratory of Fine Chemicals(KF1902)。
文摘Due to their excellent photoelectron chemical properties and suitable energy level alignment with perovskite,perylene diimide(PDI)derivatives are competitive non-fullerene electron transport material(ETM)candidates for perovskite solar cells(PSCs).However,the conjugated rigid plane structure of PDI units result in PDI-based ETMs tending to form large aggregates,limiting their application and photovoltaic performance.In this study,to restrict aggregation and further enhance the photovoltaic performance of PDI-type ETMs,two PDI-based ETMs,termed PDO-PDI2(dimer)and PDO-PDI3(trimer),were constructed by introducing a phenothiazine 5,5-dioxide(PDO)core building block.The research manifests that the optoelectronic properties and film formation property of PDO-PDI2 and PDO-PDI3 were deeply affected by the molecular spatial configuration.Applied in PSCs,PDO-PDI3 with threedimensional spiral molecular structure,exhibits superior electron extraction and transport properties,further achieving the best PCE of 18.72%and maintaining 93%of its initial efficiency after a 720-h aging test under ambient conditions.