The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of ...The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron-phonon coupling strength.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10974058)the Shanghai Natural Science Foundation of China (Grant No 09ZR1421400)+1 种基金Science and Technology Program of Shanghai Maritime University (Grant No2008475)Postdoctoral Science Foundation of Jiangsu Province of China (Grant No 0802008C)
文摘The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron-phonon coupling strength.