BaFeO_(3-δ)-derived perovskites are promising cathodes for intermediate temperature solid oxide fuel cells.The activity of these perovskites depends on the number of oxygen vacancies in their lattice,which can be tun...BaFeO_(3-δ)-derived perovskites are promising cathodes for intermediate temperature solid oxide fuel cells.The activity of these perovskites depends on the number of oxygen vacancies in their lattice,which can be tuned by cationic substitution.Our first-principle calculations show that Ag is a promising substitute for the Fe site,resulting in a reduced oxygen vacancy formation energy compared with the pristine BaFeO_(3-δ).Ag has limited solubility in perovskites,and its introduction generates an Ag metal secondary phase,which influences the cathode performances.In this work,we investigate the matter,using a Ba0:9La0:1Fe_(1-x)AgxO_(3-δ)series of materials as a case study.Acknowledging the limited solubility of Ag in Ba0:9La0:1Fe_(1-x)AgxO_(3-δ),we aim to distinguish the effects of Ag substitution from those of the Ag secondary phase.We observed that Ag substitution increases the number of oxygen vacancies,confirming our calculations,and facilitates the oxygen incorporation.However,Ag substitution lowers the number of holes,in this way reducing the electronic p-type conductivity.On the other hand,Ag metal positively affects the electronic conductivity and helps the redistribution of the electronic charge at the cathode-electrolyte interface.展开更多
Microbial fuel cells(MFCs)employing Pseudomonas putida B6-2(ATCC BAA-2545)as an exoelectrogen have been developed to harness energy from various conventional substrates,such as acetate,lactate,glucose,and fructose.Owi...Microbial fuel cells(MFCs)employing Pseudomonas putida B6-2(ATCC BAA-2545)as an exoelectrogen have been developed to harness energy from various conventional substrates,such as acetate,lactate,glucose,and fructose.Owing to its metabolic versatility,P.putida B6-2 demonstrates adaptable growth rates on diverse,cost-effective carbon sources within MFCs,exhibiting distinct energy production characteristics.Notably,the anode chamber’s pH rises with carboxylates’(acetate and lactate)consumption and decreases with carbohydrates’(glucose and fructose)utilization.The MFC utilizing fructose as a substrate achieved the highest power density at 411 mW m^(−2).Initial analysis revealed that P.putida B6-2 forms biofilms covered with nanowires,contributing to bioelectricity generation.These microbial nanowires are likely key players in direct extracellular electron transport through physical contact.This study established a robust foundation for producing valuable compounds and bioenergy from common substrates in bioelectrochemical systems(BESs)utilizing P.putida as an exoelectrogen.展开更多
基金The authors gratefully acknowledge the Research Grant Council of Hong Kong for support through the projects 16201820,and 16206019.
文摘BaFeO_(3-δ)-derived perovskites are promising cathodes for intermediate temperature solid oxide fuel cells.The activity of these perovskites depends on the number of oxygen vacancies in their lattice,which can be tuned by cationic substitution.Our first-principle calculations show that Ag is a promising substitute for the Fe site,resulting in a reduced oxygen vacancy formation energy compared with the pristine BaFeO_(3-δ).Ag has limited solubility in perovskites,and its introduction generates an Ag metal secondary phase,which influences the cathode performances.In this work,we investigate the matter,using a Ba0:9La0:1Fe_(1-x)AgxO_(3-δ)series of materials as a case study.Acknowledging the limited solubility of Ag in Ba0:9La0:1Fe_(1-x)AgxO_(3-δ),we aim to distinguish the effects of Ag substitution from those of the Ag secondary phase.We observed that Ag substitution increases the number of oxygen vacancies,confirming our calculations,and facilitates the oxygen incorporation.However,Ag substitution lowers the number of holes,in this way reducing the electronic p-type conductivity.On the other hand,Ag metal positively affects the electronic conductivity and helps the redistribution of the electronic charge at the cathode-electrolyte interface.
基金supported by grants from National Natural Science Foundation of China (32070097 and 91951202)National Key Research and Development Program of China (2019YFA0904800).
文摘Microbial fuel cells(MFCs)employing Pseudomonas putida B6-2(ATCC BAA-2545)as an exoelectrogen have been developed to harness energy from various conventional substrates,such as acetate,lactate,glucose,and fructose.Owing to its metabolic versatility,P.putida B6-2 demonstrates adaptable growth rates on diverse,cost-effective carbon sources within MFCs,exhibiting distinct energy production characteristics.Notably,the anode chamber’s pH rises with carboxylates’(acetate and lactate)consumption and decreases with carbohydrates’(glucose and fructose)utilization.The MFC utilizing fructose as a substrate achieved the highest power density at 411 mW m^(−2).Initial analysis revealed that P.putida B6-2 forms biofilms covered with nanowires,contributing to bioelectricity generation.These microbial nanowires are likely key players in direct extracellular electron transport through physical contact.This study established a robust foundation for producing valuable compounds and bioenergy from common substrates in bioelectrochemical systems(BESs)utilizing P.putida as an exoelectrogen.