期刊文献+
共找到2,879篇文章
< 1 2 144 >
每页显示 20 50 100
Atomic-level quantitative analysis of electronic functional materials by aberration-corrected STEM
1
作者 Wanbo Qu Zhihao Zhao +6 位作者 Yuxuan Yang Yang Zhang Shengwu Guo Fei Li Xiangdong Ding Jun Sun Haijun Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期12-25,共14页
The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous a... The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies. 展开更多
关键词 AC-STEM quantitative analysis POLARIZATION electronic functional materials
下载PDF
Approximating the Radial Distribution Function of the Electron in a Hydrogen Atom by a Normal Distribution Suggests That Magnetic Confinement Fusion Would Be Less Energy Efficient than Inertial Confinement Fusion
2
作者 Motohisa Osaka 《Applied Mathematics》 2024年第9期585-593,共9页
Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the s... Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the single electron in 1s orbit is expressed as φ2, a function of distance from the nucleus. However, the probability of existence of the electron is expressed as a radial distribution function at an arbitrary distance from the nucleus, so it is estimated as the probability of the entire spherical shape of that radius. In this study, it has been found that the electron existence probability approximates the radial distribution function by assuming that the probability of existence of the electron being in the vicinity of the nucleus follows a normal distribution for arbitrary x-, y-, and z-axis directions. This implies that the probability of existence of the electron, which has been known only from the distance information, would follow a normal distribution independently in the three directions. When the electrons’ motion is extremely restricted in a certain direction by the magnetic field of both tokamak and helical fusion reactors, the probability of existence of the electron increases with proximity to the nucleus, and as a result, it is less likely to be liberated from the nucleus. Therefore, more and more energy is required to free the nucleus from the electron in order to generate plasma. 展开更多
关键词 electron Cloud Radial Distribution function Nuclear Fusion TOKAMAK Laser
下载PDF
Structure,electronic,and nonlinear optical properties of superalkaline M_(3)O(M=Li,Na)doped cyclo[18]carbon
3
作者 刘晓东 卢其亮 罗其全 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期311-317,共7页
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef... Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm. 展开更多
关键词 superalkaline doped carbon structure and electronic properties nonlinear optical properties density functional theory(DFT)
下载PDF
Investigation of the structural, electronic and mechanical properties of CaO–SiO_(2) compound particles in steel based on density functional theory 被引量:1
4
作者 Chao Gu Ziyu Lyu +1 位作者 Qin Hu Yanping Bao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期744-755,共12页
CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the struct... CaO–SiO_(2)compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in CaO–SiO_(2)system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of CaO–SiO_(2)compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate(γ-C2S), alpha-prime(L) dicalcium silicate(αL′-C2S), alpha-prime(H) dicalcium silicate(αH′-C2S), alpha dicalcium silicate(α-C2S), rankinite(C3S2), hatrurite(C3S), wollastonite(CS), and pseudowollastonite(Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of0.249–0.281. This study provided further understanding concerning the CaO–SiO_(2)compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels. 展开更多
关键词 CaO–SiO_(2) density functional theory structural property electronic property mechanical property
下载PDF
Structural, Electronic and Optical Properties of ScxAl1-xN alloys within DFT Calculations
5
作者 Asma Said Yasmina Oussaifi Moncef Said 《Journal of Applied Mathematics and Physics》 2024年第2期569-584,共16页
Structural, electronic and optical properties of Sc-based aluminum-nitride alloy have been carried out with first-principles methods using both local density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE) hybri... Structural, electronic and optical properties of Sc-based aluminum-nitride alloy have been carried out with first-principles methods using both local density approximation (LDA) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. This latter provides a more accurate description of the lattice parameters, enthalpy of formation, electronic and optical properties of our alloy than standard DFT. We found the transition from wurtzite to rocksalt structures at 61% of Sc concentration. By increasing the scandium concentration, the lattice parameters and the band gap decrease. The HSE band gap is in good agreement with available experimental data. The existence of the strong hybridization between Sc 3d and N 2p indicates the transport of electrons from Sc to N atoms. Besides, it is shown that the insertion of the Sc atom leads to the redshift of the optical absorption edge. The optical absorption of Sc<sub>x</sub>Al<sub>1-x</sub>N is found to decrease with increasing Sc concentrations in the low energy range. Because of this, Sc<sub>x</sub>Al<sub>1-x</sub>N have a great potential for applications in photovoltaics and photocatalysis. 展开更多
关键词 DFT electronic and Optical Properties ScAlN Hybrid functional HSE
下载PDF
Mathematical Wave Functions and 3D Finite Element Modelling of the Electron and Positron
6
作者 Declan Traill 《Journal of Applied Mathematics and Physics》 2024年第4期1134-1162,共29页
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an... The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles. 展开更多
关键词 electron POSITRON Wave function Solution Electromagnetic Spin Mass Charge Proof Fundamental Particle Properties Quantum Mechanics Classical Physics Computer 3D Model Schrödinger Equation RMS KLEIN GORDON Electric Magnetic Lorentz Invariant Hertzian Vector Point Potential Field Density Phase Flow Attraction REPULSION Shell Theorem Ehrenfest VIRIAL Normalization Harmonic Oscillator
下载PDF
Density functional theory study of influence of impurity on electronic properties and reactivity of pyrite 被引量:8
7
作者 李玉琼 陈建华 +1 位作者 陈晔 郭进 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1887-1895,共9页
The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by fr... The electronic property of pyrite supercell containing As,Se,Te,Co or Ni hetero atoms were calculated using density functional theory(DFT),and the reactivities of pyrite with oxygen and xanthate were discussed by frontier orbital methods.The cell volume expands due to the presence of impurity.Co and Ni mainly affect the bands near Fermi levels,while As mainly affects the shallow and deep valence bands,and Se and Te mainly affect the deep valence bands.Electronic density analysis suggests that there exists a strong covalent interaction between hetero atom and its surrounding atoms.By frontier orbital calculation,it is suggested that As,Co and Ni have greater influence on the HOMO and LUMO of pyrite than Se and Te.In addition,pyrite containing As,Co or Ni is easier to oxidize by oxygen than pyrite containing Se or Te,and pyrite containing Co or Ni has greater interaction with collector.These are in agreement with the observed pyrite practice. 展开更多
关键词 PYRITE IMPURITY density functional theory electronic properties REACTIVITY
下载PDF
Density Functional Theory Study on Electronic and Magnetic Properties of Mn-doped (MgO)n (n=2-10) Clusters
8
作者 王鹏 杨明霞 +2 位作者 张胜利 黄世萍 田辉平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期35-42,I0003,共9页
We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. T... We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. The optimized geometries show that the impurity Mn atom prefers to replace the Mg atom which has low coordination number in all the lowest-energy MnMgn-1On (n=2-10) structures. The stability analysis clearly represents that the average binding energies of the doped clusters are larger than those of the corresponding pure (MgO)n clusters. Maximum peaks of the second order energy differences are observed for MnMg~_1On clusters at n=6, 9, implying that these clusters exhibit higher stability than their neighboring clusters. In addition, all the Mn-doped Mg clusters exhibit high total magnetic moments with the exception of MnMgO2 which has 3.00μB. Their magnetic behavior is attributed to the impurity Mn atom, the charge transfer modes, and the size of MnMgn- 1On clusters. 展开更多
关键词 Density functional theory MnMgn-1On cluster electronic property MAGNETICPROPERTY
下载PDF
Textile electronics for wearable applications 被引量:2
9
作者 Junhong Pu Kitming Ma +8 位作者 Yonghui Luo Shengyang Tang Tongyao Liu Jin Liu Manyui Leung Jing Yang Ruomu Hui Ying Xiong Xiaoming Tao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期179-213,共35页
Textile electronics have become an indispensable part of wearable applications because of their large flexibility,light-weight,comfort and electronic functionality upon the merge of textiles and microelectronics.As a ... Textile electronics have become an indispensable part of wearable applications because of their large flexibility,light-weight,comfort and electronic functionality upon the merge of textiles and microelectronics.As a result,the fabrication of functional fibrous materials and the integration of textile electronic devices have attracted increasing interest in the wearable electronic community.Challenges are encountered in the development of textile electronics in a way that is electrically reliable and durable,without compromising on the deformability and comfort of a garment,including processing multiple materials with great mismatches in mechanical,thermal,and electrical properties and assembling various structures with the disparity in dimensional scales and surface roughness.Equal challenges lie in high-quality and cost-effective processes facilitated by high-level digital technology enabled design and manufacturing methods.This work reviews the manufacturing of textile-shaped electronics via the processing of functional fibrous materials from the perspective of hierarchical architectures,and discusses the heterogeneous integration of microelectronics into normal textiles upon the fabric circuit board and adapted electrical connections,broadly covering both conventional and advanced textile electronic production processes.We summarize the applications and obstacles of textile electronics explored so far in sensors,actuators,thermal management,energy fields,and displays.Finally,the main conclusions and outlook are provided while the remaining challenges of the fabrication and application of textile electronics are emphasized. 展开更多
关键词 textile electronics fibrous materials MANUFACTURING functionALIZATION INTEGRATION
下载PDF
Recent advances in meniscus-on-demand three-dimensional micro-and nano-printing for electronics and photonics 被引量:2
10
作者 Shiqi Hu Xiao Huan +3 位作者 Yu Liu Sixi Cao Zhuoran Wang Ji Tae Kim 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期302-317,共16页
The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-de... The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics. 展开更多
关键词 3D printing ink meniscus functional materials electronicS PHOTONICS
下载PDF
Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma 被引量:1
11
作者 You HE Yeong-Min LIM +3 位作者 Jun-Ho LEE Ju-Ho KIM Moo-Young LEE Chin-Wook CHUNG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期69-78,共10页
In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit ... In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively. 展开更多
关键词 capacitively coupled plasma parallel resonance electron energy distribution function
下载PDF
Electronic structure and optical properties of In-doped SrTiO3 by density function theory 被引量:4
12
作者 张志勇 贠江妮 张富春 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第9期2791-2797,共7页
The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory ... The effect of In doping on the electronic structure and optical properties of SrTiO3 is investigated by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the density function theory (DFT). The calculated results reveal that due to the hole doping, the Fermi level shifts into valence bands (VBs) for SrTi1-x InxO3 with x = 0.125 and the system exhibits p-type degenerate semiconductor features. It is suggested according to the density of states (DOS) of SrTi0.875In0.125O3 that the band structure of p-type SrTIO3 can be described by a rigid band model. At the same time, the DOS shifts towards high energies and the optical band gap is broadened. The wide band gap, small transition probability and weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the optical transparency of the film. The optical transmittance of In doped SrTiO3 is higher than 85% in a visible region, and the transmittance improves greatly. And the cut-off wavelength shifts into a blue-light region with the increase of In doping concentration. 展开更多
关键词 the density function theory SRTIO3 In-doping electronic structure optical transmittance
下载PDF
Functionalized Fiber-Based Strain Sensors:Pathway to Next-Generation Wearable Electronics 被引量:15
13
作者 Zekun Liu Tianxue Zhu +4 位作者 Junru Wang Zijian Zheng Yi Li Jiashen Li Yuekun Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期90-128,共39页
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artific... Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection,personal and public healthcare,future entertainment,man-machine interaction,artificial intelligence,and so forth.Much research has focused on fiber-based sensors due to the appealing performance of fibers,including processing flexibility,wearing comfortability,outstanding lifetime and serviceability,low-cost and large-scale capacity.Herein,we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors.We describe the approaches for preparing conductive fibers such as spinning,surface modification,and structural transformation.We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits.The applications toward motion detection,healthcare,man-machine interaction,future entertainment,and multifunctional sensing are summarized with typical examples.We finally critically analyze tough challenges and future remarks of fiber-based strain sensors,aiming to implement them in real applications. 展开更多
关键词 Wearable strain sensor Fiber functionalization WEARABILITY Flexible electronics Conductive materials
下载PDF
Electronic structure and flotability of gold-bearing pyrite:A density functional theory study 被引量:2
14
作者 LIU Dan WANG Yi-jie +1 位作者 XIAN Yong-jun WEN Shu-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2288-2293,共6页
Various incorporation of Au in pyrite and its effects on the geometrical structure,electronic structure and flotability of pyrite were theoretically investigated and fully discussed by performing density functional th... Various incorporation of Au in pyrite and its effects on the geometrical structure,electronic structure and flotability of pyrite were theoretically investigated and fully discussed by performing density functional theory(DFT).The calculated incorporation energy shows that gold would most likely exist in pyrite via incorporating into interstitial lattice sites in the absence of As impurity.As a result of incorporated Au,the covalence levels of the S—Fe and S—S bonds are changed,and the tonicity of Au—S bonds and antibonding of Au—Fe bonds are found to form in the pyrite,which would change the natural flotability of pyrite.The Au impurity energy levels are introduced into the energy band and result in the transformation of pyrite semiconductivity type.The calculated band-gap value suggests that the incorporated Au significantly decreases pyrite semiconductivity level,which enhances the formation and the adsorption stability of dixanthogen during pyrite flotation.The DOS results reveal that the stability and depression difficulty level of pyrites increases in the following order:Fe_(32)S_(63)As<Fe_(32)S_(64)<Fe_(32)S_(63)As Au<Fe_(32)S_(64)Au. 展开更多
关键词 PYRITE GOLD DENSITY functionAL theory electronic structure flotability
下载PDF
Geometries, Electronic Structures, and Electron Detachment Energies of Small Boron Sulfide Anions: A Density Functional Theory Investigation 被引量:1
15
作者 郭巧灵 郭谨昌 李思殿 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第6期651-658,共8页
A density functional theory investigation on the geometries, electronic structures, and electron detachment energies of BS, BS2, B(BS)2 and B(BS)3 has been performed in this work. The linear ground-state structure... A density functional theory investigation on the geometries, electronic structures, and electron detachment energies of BS, BS2, B(BS)2 and B(BS)3 has been performed in this work. The linear ground-state structures of BS (C∞v, ^1∑^+) and BS2^- (O∞h, ^1∑g^+) prove to be similar to the previously reported BO and BO2 with systematically lower electron detachment energies. Small boron sulfide clusters are found to favor the formation of -B=S groups which function basically as a-radicals and dominate the ground-state structures of the systems. The perfect linear B(BS)2^-(D∞h, ^3∑g) and beautiful equilateral triangle B(BS)3^- (D3h,^2A1”) turn out to be analogous to the well-known C2v BH2 and O3h BH3, respectively. The electron affinities of BS, BS2, B(BS)2 and B(BS)3 are predicted to be 2.3, 3.69, 3.00 and 3.45 eV, respectively. The electron detachment energies calculated for BS^-, BS2^-, B(BS)2^-, and B(BS)3^- may facilitate future photoelectron spectroscopy measurements to characterize the geometrical and electronic structures of these anions. 展开更多
关键词 boron sulfides density functional theory GEOMETRIES electronic structures electron detachment energies photoelectron spectroscopy
下载PDF
Electronic structure and optical properties of Nb-doped Sr_2TiO_4 by density function theory calculation 被引量:1
16
作者 贠江妮 张志勇 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期2945-2952,共8页
This paper investigates the effect of Nb doping on the electronic structure and optical properties of Sr2TiO4 by the first-principles calculation of plane wave ultra-soft pseudo-potential based on density functional t... This paper investigates the effect of Nb doping on the electronic structure and optical properties of Sr2TiO4 by the first-principles calculation of plane wave ultra-soft pseudo-potential based on density functional theory (DFT).The calculated results reveal that due to the electron doping,the Fermi level shifts into conduction bands(CBs) for Sr2NbxTi1-xO4 with x=0.125 and the system shows n-type degenerate semiconductor features. Sr2TiO4 exhibits optical anisotropy in its main crystal axes,and the c-axis shows the most suitable crystal growth direction for obtaining a wide transparent region.The optical transmittance is higher than 90% in the visible range for Sr2Nb0.125Ti0.875O4. 展开更多
关键词 density functional theory Sr2TiO4 Nb-doping electronic structure
下载PDF
A Lightweight Electronic Water Pump Shell Defect Detection Method Based on Improved YOLOv5s
17
作者 Qunbiao Wu Zhen Wang +2 位作者 Haifeng Fang Junji Chen Xinfeng Wan 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期961-979,共19页
For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surf... For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surface defect detection,a lightweight detection method based on an improved YOLOv5s method is proposed to replace the traditional manual detection methods.In this method,the MobileNetV3 module replaces the backbone network of YOLOv5s,depth-separable convolution is introduced,the parameters and calculations are reduced,and CIoU_Loss is used as the loss function of the boundary box regression to improve its detection accuracy.A dataset of electronic pump shell defects is established,and the performance of the improved method is evaluated by comparing it with that of the original method.The results show that the parameters and FLOPs are reduced by 49.83%and 61.59%,respectively,compared with the original YOLOv5s model,and the detection accuracy is improved by 1.74%,which is an indication of the superiority of the improved method.To further verify the universality of the improved method,it is compared with the results using the original method on the PASCALVOC2007 dataset,which verifies that it yields better performance.In summary,the improved lightweight method can be used for the real-time detection of electronic water pump shell defects. 展开更多
关键词 electronic water pump shell surface defect detection lightweight network loss function
下载PDF
A New Electron Charge Distribution Function of Electron
18
作者 Teruo Kurai 《Journal of Modern Physics》 CAS 2023年第2期111-126,共16页
Here we derive a new charge distribution function for an electron by using as an equation of motion a segment of charge whose self energy interaction is due to electric field potential. Our method is based on the cons... Here we derive a new charge distribution function for an electron by using as an equation of motion a segment of charge whose self energy interaction is due to electric field potential. Our method is based on the consideration that a charged distribution function should be represented as an eigenfunction of electron mass energy. We compare our electron charge distribution function to that of Weinberg’s &#951;(r) and our charged electron radius to that obtained by Kim. 展开更多
关键词 Charge Distribution function electron
下载PDF
Covalently Bonded Ni Sites in Black Phosphorene with Electron Redistribution for Efficient Metal‑Lightweighted Water Electrolysis
19
作者 Wenfang Zhai Ya Chen +5 位作者 Yaoda Liu Yuanyuan Ma Paranthaman Vijayakumar Yuanbin Qin Yongquan Qu Zhengfei Dai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期233-245,共13页
The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers... The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments,but challengeable.In this work,a low-content Ni-functionalized approach triggers the high capability of black phosphorene(BP)with hydrogen and oxygen evolution reaction(HER/OER)bifunctionality.Through a facile in situ electro-exfoliation route,the ionized Ni sites are covalently functionalized in BP nanosheets with electron redistribution and controllable metal contents.It is found that the as-fabricated Ni-BP electrocatalysts can drive the water splitting with much enhanced HER and OER activities.In 1.0 M KOH electrolyte,the optimized 1.5 wt%Nifunctionalized BP nanosheets have readily achieved low overpotentials of 136 mV for HER and 230 mV for OER at 10 mA cm^(−2).Moreover,the covalently bonding between Ni and P has also strengthened the catalytic stability of the Ni-functionalized BP electrocatalyst,stably delivering the overall water splitting for 50 h at 20 mA cm^(−2).Theoretical calculations have revealed that Ni–P covalent binding can regulate the electronic structure and optimize the reaction energy barrier to improve the catalytic activity effectively.This work confirms that Ni-functionalized BP is a suitable candidate for electrocatalytic overall water splitting,and provides effective strategies for constructing metal-lightweighted economic electrocatalysts. 展开更多
关键词 Black phosphorus Water electrolysis ELECTROCATALYST electron redistribution Covalent functionalization
下载PDF
Abnormal transition of the electron energy distribution with excitation of the second harmonic in low-pressure radio-frequency capacitively coupled plasmas
20
作者 余乐怡 陆文琪 张丽娜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期58-63,共6页
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic... The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas. 展开更多
关键词 RADIO-FREQUENCY capacitively coupled plasma HARMONICS the electron energy probability function
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部