The memristor, as the fourth basic circuit element, has drawn worldwide attention since its physical implementation was released by HP Labs in 2008. However, at the nano-scale, there are many difficulties for memristo...The memristor, as the fourth basic circuit element, has drawn worldwide attention since its physical implementation was released by HP Labs in 2008. However, at the nano-scale, there are many difficulties for memristor physical realization. So a better understanding and analysis of a good model will help us to study the characteristics of a memristor. In this paper, we analyze a possible mechanism for the switching behavior of a memristor with a Pt/TiO2/Pt structure, and explain the changes of electronic barrier at the interface of Pt/TiO2. Then, a quantitative analysis about each parameter in the exponential model of memristor is conducted based on the calculation results. The analysis results are validated by simulation results. The efforts made in this paper will provide researchers with theoretical guidance on choosing appropriate values for(α, β, χ, γ) in this exponential model.展开更多
Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport th...Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport through back-to-back double junctions. The UV (365 nm) responses of surface-contacted ZnO film are provided by I-V measurement, along with the current evolution process by on/off of UV illumination. In this paper, the back-to-back metal-seconductor-metal (M-S-M) model is used to explain the electronic transport of a ZnO nanowire film based structure. A thermionic-field electron emission mechanism is employed to fit and explain the as-observed UV sensitive electronic transport properties of ZnO film with surface-modulation by oxygen and water molecular coverage.展开更多
Relaxor ferroelectric polymers display great potential in capacitor dielectric applications because of their excellent flexibility,light weight,and high dielectric constant.However,their electrical energy storage capa...Relaxor ferroelectric polymers display great potential in capacitor dielectric applications because of their excellent flexibility,light weight,and high dielectric constant.However,their electrical energy storage capacity is limited by their high conduction losses and low dielectric strength,which primarily originates from the impact-ionization-induced electron multiplication,low mechanical modulus,and low thermal conductivity of the dielectric polymers.Here a matrix free strategy is developed to effectively suppress electron multiplication effects and to enhance mechanical modulus and thermal conductivity of a dielectric polymer,which involves the chemical adsorption of an electron barrier layer on boron nitride nanosheet surfaces by chemically adsorbing an amino-containing polymer.A dramatic decrease of leakage current(from 2.4×10^(-6)to 1.1×10^(-7)A cm^(-2)at 100 MV m^(-1))and a substantial increase of breakdown strength(from 340 to 742 MV m^(-1))were achieved in the nanocompostes,which result in a remarkable increase of discharge energy density(from 5.2 to 31.8 J cm^(-3)).Moreover,the dielectric strength of the nanocomposites suffering an electrical breakdown could be restored to 88%of the original value.This study demonstrates a rational design for fabricating dielectric polymer nanocomposites with greatly enhanced electric energy storage capacity.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61374150 and 61374171)the State Key Program of the National Natural Science Foundation of China(Grant No.61134012)+1 种基金the National Basic Research Program of China(Grant No.2011CB710606)the Fundamental Research Funds for the Central Universities,China(Grant No.2013TS126)
文摘The memristor, as the fourth basic circuit element, has drawn worldwide attention since its physical implementation was released by HP Labs in 2008. However, at the nano-scale, there are many difficulties for memristor physical realization. So a better understanding and analysis of a good model will help us to study the characteristics of a memristor. In this paper, we analyze a possible mechanism for the switching behavior of a memristor with a Pt/TiO2/Pt structure, and explain the changes of electronic barrier at the interface of Pt/TiO2. Then, a quantitative analysis about each parameter in the exponential model of memristor is conducted based on the calculation results. The analysis results are validated by simulation results. The efforts made in this paper will provide researchers with theoretical guidance on choosing appropriate values for(α, β, χ, γ) in this exponential model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274082 and 51172194)the Excellent Young Scientist Research Award Fund of Shandong Province,China(Grant No.BS2011CL002)
文摘Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport through back-to-back double junctions. The UV (365 nm) responses of surface-contacted ZnO film are provided by I-V measurement, along with the current evolution process by on/off of UV illumination. In this paper, the back-to-back metal-seconductor-metal (M-S-M) model is used to explain the electronic transport of a ZnO nanowire film based structure. A thermionic-field electron emission mechanism is employed to fit and explain the as-observed UV sensitive electronic transport properties of ZnO film with surface-modulation by oxygen and water molecular coverage.
基金supported by the National Natural Science Foundation of China(52003153,51877132 and 52002300)Program of Shanghai Academic Research Leader(21XD1401600)+1 种基金State Key Laboratory of Electrical Insulation and Power Equipment(EIPE20203,EIPE21206)the Major Research Plan of National Natural Science Foundation of China(92066103)。
文摘Relaxor ferroelectric polymers display great potential in capacitor dielectric applications because of their excellent flexibility,light weight,and high dielectric constant.However,their electrical energy storage capacity is limited by their high conduction losses and low dielectric strength,which primarily originates from the impact-ionization-induced electron multiplication,low mechanical modulus,and low thermal conductivity of the dielectric polymers.Here a matrix free strategy is developed to effectively suppress electron multiplication effects and to enhance mechanical modulus and thermal conductivity of a dielectric polymer,which involves the chemical adsorption of an electron barrier layer on boron nitride nanosheet surfaces by chemically adsorbing an amino-containing polymer.A dramatic decrease of leakage current(from 2.4×10^(-6)to 1.1×10^(-7)A cm^(-2)at 100 MV m^(-1))and a substantial increase of breakdown strength(from 340 to 742 MV m^(-1))were achieved in the nanocompostes,which result in a remarkable increase of discharge energy density(from 5.2 to 31.8 J cm^(-3)).Moreover,the dielectric strength of the nanocomposites suffering an electrical breakdown could be restored to 88%of the original value.This study demonstrates a rational design for fabricating dielectric polymer nanocomposites with greatly enhanced electric energy storage capacity.