Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe ...Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe are good 2D piezoelectric materials with large piezoelectric coefficients. The values of d11d11 of SnSi and SnGe are 5.04pm/V and 5.42pm/V, respectively, which are much larger than 2D MoS2 (3.6pm/V) and are comparable with some frequently used bulk materials (e.g., wurtzite AlN 5.1pm/V). Charge transfer is calculated by the L wdin analysis and we find that the piezoelectric coefficients (d11d11 and d31) are highly dependent on the polarizabilities of the anions and cations in group-IV monolayers.展开更多
The Xinxing Electronics Group was jointly established by several stateowned electronic enterprises lacking in technical base in Zibo, Shandong Province, in 1994. The year 1996 saw the Group realizing sales income of R...The Xinxing Electronics Group was jointly established by several stateowned electronic enterprises lacking in technical base in Zibo, Shandong Province, in 1994. The year 1996 saw the Group realizing sales income of RMB80 million and pre-tax profits of RMB25 million. According to market forecasts, sales income of RMB300 million展开更多
Organic electrode materials have high capacity,and environmentally friendly advantages for the next generation lithium-ion batteries(LIBs).However,organic electrode materials face many challenges,such as low reduction...Organic electrode materials have high capacity,and environmentally friendly advantages for the next generation lithium-ion batteries(LIBs).However,organic electrode materials face many challenges,such as low reduction potential as cathode materials or high reduction potential as anode materials.Here,the influence of chemical functionalities that are capable of either electron donating or electron withdrawing groups on the reduction potential and charge-discharge performance of anthraquinone(AQ)based system is studied.The cyclic voltammetry results show that the introduction of two-OH groups,two-NO2 groups and one-CH3 group on anthraquinone structure has a little impact on the reduction potential,which is found to be 2.1 V.But when three or four-OH groups are introduced on AQ structure,the reduction potential is increased to about 3.1 V.The charge-discharge tests show that these materials exhibit moderate cycling stability.展开更多
Excited-state intramolecular proton transfer(ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-phenol(DDOP), 4-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-[1,1?-biphenyl]-3-o...Excited-state intramolecular proton transfer(ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-phenol(DDOP), 4-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-[1,1?-biphenyl]-3-ol(DDOP-C_(6)H_(5)) and 4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3-hydroxy-benzonitrile(DDOP-CN), have been systematically explored by density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods. Two stable configurations(enol and keto forms) are found in the ground states(S_(0)) for all the compounds while the enol form only exists in the first excited states(S_(1)) for the compound modified with electron donating group(-C_(6)H_(5)). In addition, the calculated absorption and emission spectra of the compounds are in good agreements with the experiments. Infrared vibrational spectra at the hydrogen bond groups demonstrate that the intramolecular hydrogen bond O(1)-H(2)···N(3) in DDOP-C_(6)H_(5) is strengthened in the S_(1) states, while the frontier molecular orbitals further reveal that the ESIPT reactions are more likely to occur in the S_(1) states for all the compounds. Besides, the proton transfer potential energy curves show that the enol forms can barely convert into keto forms in the S_(0) states because of the high energy barriers. Meanwhile, intramolecular proton transfer of all the compounds could occur in S_(1) states. The ESIPT reactions of the ortho-hydroxylated oxazolines are barrierless processes for unsubstituted DDOP and electron withdrawing substituted DDOP-CN, while the electron donating substituted DDOP-C_(6)H_(5) has a small barrier, so the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 51672208the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period under Grant No 2012BAD47B02+2 种基金the Sci-Tech Research and Development Program of Shaanxi Province under Grant Nos 2010K01-120,2011JM6010 and 2015JM5183the Shaanxi Provincial Department of Education under Grant No 2013JK0927the SRF for ROCS of SEM
文摘Electronic, elastic and piezoelectric properties of two-dimensional (2D) group-IV buckled monolayers (GeSi, SnSi and SnGe) are studied by first principle calculations. According to our calculations, SnSi and SnGe are good 2D piezoelectric materials with large piezoelectric coefficients. The values of d11d11 of SnSi and SnGe are 5.04pm/V and 5.42pm/V, respectively, which are much larger than 2D MoS2 (3.6pm/V) and are comparable with some frequently used bulk materials (e.g., wurtzite AlN 5.1pm/V). Charge transfer is calculated by the L wdin analysis and we find that the piezoelectric coefficients (d11d11 and d31) are highly dependent on the polarizabilities of the anions and cations in group-IV monolayers.
文摘The Xinxing Electronics Group was jointly established by several stateowned electronic enterprises lacking in technical base in Zibo, Shandong Province, in 1994. The year 1996 saw the Group realizing sales income of RMB80 million and pre-tax profits of RMB25 million. According to market forecasts, sales income of RMB300 million
基金Project(21875076)supported by the National Natural Science Foundation of ChinaProjects(2018A050506077,2017A050506048)supported by the Scientific and Technological Plan of Guangdong Province,ChinaProject(201910574037)supported by the Undergraduates’ Innovating Experimentation Project of China
文摘Organic electrode materials have high capacity,and environmentally friendly advantages for the next generation lithium-ion batteries(LIBs).However,organic electrode materials face many challenges,such as low reduction potential as cathode materials or high reduction potential as anode materials.Here,the influence of chemical functionalities that are capable of either electron donating or electron withdrawing groups on the reduction potential and charge-discharge performance of anthraquinone(AQ)based system is studied.The cyclic voltammetry results show that the introduction of two-OH groups,two-NO2 groups and one-CH3 group on anthraquinone structure has a little impact on the reduction potential,which is found to be 2.1 V.But when three or four-OH groups are introduced on AQ structure,the reduction potential is increased to about 3.1 V.The charge-discharge tests show that these materials exhibit moderate cycling stability.
基金supported by the National Natural Science Foundation of China(Nos.21963008 and 21767010)the Natural Science Foundation of Hubei Province(No.2018CFB650)the Postgraduate Research and Innovation Plan Project of Hubei Minzu University(No.MYK2020001)。
文摘Excited-state intramolecular proton transfer(ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-phenol(DDOP), 4-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-[1,1?-biphenyl]-3-ol(DDOP-C_(6)H_(5)) and 4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3-hydroxy-benzonitrile(DDOP-CN), have been systematically explored by density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods. Two stable configurations(enol and keto forms) are found in the ground states(S_(0)) for all the compounds while the enol form only exists in the first excited states(S_(1)) for the compound modified with electron donating group(-C_(6)H_(5)). In addition, the calculated absorption and emission spectra of the compounds are in good agreements with the experiments. Infrared vibrational spectra at the hydrogen bond groups demonstrate that the intramolecular hydrogen bond O(1)-H(2)···N(3) in DDOP-C_(6)H_(5) is strengthened in the S_(1) states, while the frontier molecular orbitals further reveal that the ESIPT reactions are more likely to occur in the S_(1) states for all the compounds. Besides, the proton transfer potential energy curves show that the enol forms can barely convert into keto forms in the S_(0) states because of the high energy barriers. Meanwhile, intramolecular proton transfer of all the compounds could occur in S_(1) states. The ESIPT reactions of the ortho-hydroxylated oxazolines are barrierless processes for unsubstituted DDOP and electron withdrawing substituted DDOP-CN, while the electron donating substituted DDOP-C_(6)H_(5) has a small barrier, so the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.