In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after...In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.展开更多
The introduction of strain In_(x)Ga_(1-x)As channel with high In content increases the confinement of the two-dimensional electron gas(2DEG)and further improves the high-frequency performance of InGaAs/InAlAs/InP HEMT...The introduction of strain In_(x)Ga_(1-x)As channel with high In content increases the confinement of the two-dimensional electron gas(2DEG)and further improves the high-frequency performance of InGaAs/InAlAs/InP HEMTs.The effect of In_(x)Ga_(1-x)As channel with different In contents on electron irradiation tolerance of InP-based HEMT structures in terms of 2DEG mobility and density has been investigated.The experiment results show that,after the same high electron irradiation dose,the 2DEG mobility and density in InP-based HEMT structures with strain In_(x)Ga_(1-x)As(x>0.53)channel decrease more dramatically than that without strain In_(0.53)Ga_(0.47)As channel.Moreover,the degradation of 2DEG mobility and density becomes more severe as the increase of In content and strain in the In_(x)Ga_(1-x)As channel.The research results can provide some suggestions for the design of radiation-resistant InP-based HEMTs.展开更多
In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the format...In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM). The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time. At the same time, lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas. Therefore, it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation.展开更多
Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damage...Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.展开更多
Polylactic acid(PLA)has been extensively applied in the fields of biology and renewable biodegradable materials because of its superior biodegradability.PLA has excellent potential as a renewable biodegradable adsorbe...Polylactic acid(PLA)has been extensively applied in the fields of biology and renewable biodegradable materials because of its superior biodegradability.PLA has excellent potential as a renewable biodegradable adsorbent in wastewater treatment.However,its poor photocatalytic properties have hindered its practical application.In this study,polyvinylpyrrolidone(PVPP)or glutaraldehyde(GA)was utilized as an adhesive agent to prepare Ag/AgCl/PLA photocatalysts with highly efficient visible light photocatalysis on a PLA fabric by utilizing the electron beam irradiation method.The photocatalytic activities of the Ag/AgCl/PLA samples were examined under visible light irradiation to analyze the degradation of methylene blue(MB)and chloramphenicol(CPL).Our experimental results demonstrate that the nanomaterial Ag/AgCl was uniformly distributed on the PLA fiber surface;this can be attributed to the effects of the crosslinking PVPP or GA.Under electron beam irradiation,adding crosslinking PVPP(or GA)is beneficial to the loading of Ag/AgCl onto the PLA.For the composite Ag/AgCl/PLA,the degradation rate for MB was as high as 97% after 150 min of visible light irradiation.The addition of 4 mg/ml of Ag/AgCl solution resulted in the greatest photocatalytic activity for CPL,and we advanced the possible degradation pathways of CPL with the best sample.Additionally,the as-prepared composite Ag/Ag Cl/PLA exhibited favorable antibacterial activity against E.coli and S.aureus,with a bacterial removal rate of >77%.展开更多
A space monocrystalline silicon(c-Si) solar cell under low-energy(〈 1 MeV) electron irradiation was investigated using noncontact photocarrier radiometry(PCR). Monte Carlo simulation(MCS) was employed to char...A space monocrystalline silicon(c-Si) solar cell under low-energy(〈 1 MeV) electron irradiation was investigated using noncontact photocarrier radiometry(PCR). Monte Carlo simulation(MCS) was employed to characterize the effect of different energy electron irradiation on the c-Si solar cell. The carrier transport parameters(carrier lifetime, diffusion coefficient, and surface recombination velocities) were obtained by best fitting the experimental results with a theoretical one-dimensional two-layer PCR model. The results showed that the increase of the irradiation electron energy caused a large reduction of the carrier lifetime and diffusion length. Furthermore, the rear surface recombination velocity of the Si:p base of the solar cell at the irradiation electron energy of 1 Me V was dramatically enhanced due to 1 MeV electron passing through the whole cell. Short-circuit current(I sc) degradation evaluated by PCR was in good agreement with that obtained by electrical measurement.展开更多
We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering...We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons. The dynamic spatial distribution of charges is obtained and validated by existing experimental data. Our simulations show that excess negative charges are concentrated near the edge of the electron range. However, the formed region of high charge density may extend to the surface and bottom of a kapton sample, due to the effects of the electric field on electron scattering and charge transport, respectively. Charge trapping is then demonstrated to significantly influence the charge motion. The charge distribution can be extended to the bottom as the trap density decreases. Charge accumulation is therefore balanced by the appearance and increase of leakage current. Accordingly, our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.展开更多
In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiat...In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiated by a non- focused electron beam. Electron scattering and transport processes in the sample are simulated with the Monte Carlo and the finite-different time-domain (FDTD) methods, respectively. The properties of charge and discharge processes are presented by the evolution of internal currents, charge quantity, surface potential, and discharge time. Internal charge accumulation in the sample may reach saturation by primary electron (PE) irradiation providing the charge duration is enough. Internal free electrons will run off to the ground in the form of leakage current due to charge diffusion and drift during the discharge process after irradiation, while trapped electrons remain. The negative surface potential determined by the charging quantity decreases to its saturation in the charge process, and then increases in the discharge process. A larger thickness of the PMMA film will result in greater charge amount and surface potential in charge saturation and in final discharge state, while the electron mobility of the material has little effects on the final discharge state. Moreover, discharge time is less for smaller thickness or larger electron mobility. The presented results can be helpful for estimating and weakening the charging of insulating samples especially under the intermittent electron beam irradiation in related surface analysis or measurement.展开更多
Different doses of electron beam was imposed on the polyacrylonitrile(PAN) precursor fibers before the fibers were stabilized. The effect of electron beam irradiation on the chemical structure, crystallite size of P...Different doses of electron beam was imposed on the polyacrylonitrile(PAN) precursor fibers before the fibers were stabilized. The effect of electron beam irradiation on the chemical structure, crystallite size of PAN precursor fibers and density, oxygen content, transverse section morphology of the stabilized fibers in the stabilization process were characterized by the use of fourier transform infrared spectroscopy(FTIR), float- sink procedure, elemental analysis and scanning electron microscope(SEM), respectively. The results showed that the extent of cyclization was increased and the crystallite size was decreased. We found that electron beam irradiation could accelerate the cyelization reaction and stabilization reaction in the stabilization process through density test and elemental analysis. We also found that the effect of 200 kGy electron beam irradiated fibers with the stabilization time of 75 min was better than that of the original stabilized fibers with 90 min. These results demonstrate that electron beam irradiation can shorten the stabilization time.展开更多
The DC characteristics of SiGe HBT irradiated at different electron dose havebeen studied in a comparison with those of Si B JT. Generally, I_b and I_b - I_(b0) increase, I_c,I_c -I_(c0) and its +/- transition V_(be) ...The DC characteristics of SiGe HBT irradiated at different electron dose havebeen studied in a comparison with those of Si B JT. Generally, I_b and I_b - I_(b0) increase, I_c,I_c -I_(c0) and its +/- transition V_(be) as well as DC current gain ft decreases with increasingdose; increase of I_b -I_(b0) with increasing dose for Si BIT is much larger than that for SiGe HBT;beta increases with V_(be) or I_b, but decreases at I_b < 0.25 mA with I_b, and congregates athigher dose; and a damage factor d(beta) is much less at the same dose for SiGe HBT than for Si BJT.SiGe HBT has much better anti-radiation performance than Si BJT. Some anomalous phenomena forincrease of I_c, I_c -I_(c0), I_b -I_(b0) and beta at low dose have been found. Some electron trapshave been measured. The mechanism of changes of characteristics is discussed.展开更多
Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requ...Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requirements for space appli- cation in electronic components, it is necessary to study structural changes and damage mechanisms of multi-walled carbon nanotubes (MWCNTs), caused by the irradiations of 70 and 110 keV electrons. In the paper, the changes of structure and damage mechanisms in the irradiated MWCNTs, induced by the irradiations of 70 and 110 keV electrons, are investigated. The changes in surface morphology and structure of the irradiated MWCNT film are characterized using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, x-ray diffraction analysis (XRD), and electron paramagnetic resonance (EPR) spectroscopy. It is found that the MWCNTs show different behaviors in structural changes after 70 and 110 keV electron irradiation due to different damage mechanisms. SEM results reveal that the irra- diation of 70 keV electrons does not change surface morphology of the MWCNT film, while the irradiation of 110 keV electrons with a high fluence of 5 x 1015 cm-2 leads to evident morphological changes, such as the formation of a rough surface, the entanglement of nanotubes and the shrinkage of nanotubes. Based on Raman spectroscopy, XPS, and XRD analyses, it is confirmed that the irradiation of 70 keV electrons increases the interlayer spacing of the MWCNTs and disorders their structure through electronic excitations and ionization effects, while the irradiation of 110 keV electrons obviously reduces the interlayer spacing of the MWCNTs and improves their graphitic order through knock-on atom dis- placements. The improvement of the irradiated MWCNTs by 110 keV electrons is attributed to the restructuring of defect sites induced by knock-on atom displacements. EPR spectroscopic analyses reveal that the MWCNTs exposed to both 70 keV electrons and 110 keV electrons suffer ionization damage to some extent.展开更多
Effective improvement in electrical properties of NO passivated SiC/SiO2 interface after being irradiated by electrons is demonstrated.The density of interface traps after being irradiated by 100-kGy electrons decreas...Effective improvement in electrical properties of NO passivated SiC/SiO2 interface after being irradiated by electrons is demonstrated.The density of interface traps after being irradiated by 100-kGy electrons decreases by about one order of magnitude,specifically,from 3×1012 cm-2·eV-1 to 4×1011 cm-2·eV-1 at 0.2 eV below the conduction band of 4H-SiC without any degradation of electric breakdown field.Particularly,the results of x-ray photoelectron spectroscopy measurement show that the C-N bonds are generated near the interface after electron irradiation,indicating that the carbon-related defects are further reduced.展开更多
Lead zirconate titanate piezoelectric ceramics have important applications in space and aerospace technology,but the effect and physical mechanism of charged particle radiation on their performance yet to be clarified...Lead zirconate titanate piezoelectric ceramics have important applications in space and aerospace technology,but the effect and physical mechanism of charged particle radiation on their performance yet to be clarified.In this study,we characterized PbZr_(0.52)Ti_(0.48)O_(3)(PZT)thin films,and changes in the ferroelectric properties of the films before and after electron and proton irradiation were investigated.The natural and heat treatment recoverability of the ferroelectric properties were studied,and the damages and mechanisms of different types of radiation in PZT films were also investigated.The results show that,in addition to ionization damages,electron irradiation causes certain structural damage on the PZT film,and the large structural damage caused by proton irradiation reduces drastically the ferroelectricity of the PZT film.展开更多
A method together with a new formula were developed for measuring the vacancy migration energy on HVEM considering the effect of surface sink of specimen on point defects.The va- cancy migration energy may be calculat...A method together with a new formula were developed for measuring the vacancy migration energy on HVEM considering the effect of surface sink of specimen on point defects.The va- cancy migration energy may be calculated through the loop growth rate under electron irradiation at various temperatures.展开更多
Changes of the average brightness and non-uniformity of dark output images,and quality of pictures captured under natural lighting for the color CMOS digital image sensorsirradiated at different electron doses have be...Changes of the average brightness and non-uniformity of dark output images,and quality of pictures captured under natural lighting for the color CMOS digital image sensorsirradiated at different electron doses have been studied in comparison to those from theγ-irradiated sensors. For the electron-irradiated sensors, the non-uniformity increases obviouslyand a small bright region on the dark image appears at the dose of 0.4 kGy. The average brightnessincreases at 0.4 kGy, increases sharply at 0.5 kGy. The picture is very blurry only at 0.6 kGy,showing the sensor undergoes severe performance degradation. Electron radiation damage is much moresevere than γ radiation damage for the CMOS image sensors. A possible explanation is presented inthis paper.展开更多
Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on th...Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.展开更多
The evolution of secondary defects and the characteristics of the void swelling of electrons irradiated Oxide Dispersion Strengthened Ferritic Steels (ODS steels) after recrystallization were studied. It was found tha...The evolution of secondary defects and the characteristics of the void swelling of electrons irradiated Oxide Dispersion Strengthened Ferritic Steels (ODS steels) after recrystallization were studied. It was found that recrystallization increases the void swelling of ODS steel as compared with solution and injected He+ + D+ states.There are two size ranges of voids formed in recrystallized ODS steel during irradiation, and bubbles can be preferential sites for the void formation. Polycrystal with low density of defects is formed, and sites where point defects disappear by irradiation decrease. This is the main reason for the increase of void swelling of ODS steel after recrystallization.展开更多
In a previous study, structure of silica gels prepared in a high magnetic field was investigated. While a direct application of such anisotropic silica gels is for an optical anisotropic medium possessing chemical res...In a previous study, structure of silica gels prepared in a high magnetic field was investigated. While a direct application of such anisotropic silica gels is for an optical anisotropic medium possessing chemical resistance, we show here their possibility of medium in materials processing. In this direction, for example, silica hydrogels have so far been used as media of crystal growth. In this paper, as opposed to the soft-wet state, dried silica gels have been investigated. We have found that lead (II) nanocrystallites were formed induced by electron irradiation to lead (ll)-doped dried Hydrogels made from a sodium metasilicate solution doped with silica gels prepared in a high magnetic field such as B = 10 T. lead (II) acetate were prepared. The dried specimens were irradiated by electrons in a transmission electron microscope environment. Electron diffraction patterns indicated the crystallinity of lead (II) nanocrystallites depending on B. An advantage of this processing technique is that the crystallinity can be controlled through the strength of magnetic field B applied during gel preparation. Specific skills are not required to control the strength of magnetic field.展开更多
Calculations of secondary electron yield(SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface ...Calculations of secondary electron yield(SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface contamination states of real sample result in notable difference between simulations and experiments. In this paper, in order to calculate SEY of metal under complicated surface state accurately, we propose a synthetic semi-empirical physical model. The processes of excitation of internal secondary electron(SE) and movement toward surface can be simulated using this model.This model also takes into account the influences of incident angle and backscattering electrons as well as the surface gas contamination. In order to describe internal electronic states accurately, the penetration coefficient of incident electron is described as a function of material atom number. Directions of internal electrons are set to be uniform in each angle. The distribution of internal SEs is proposed by considering both the integration convergence and the cascade scattering process.In addition, according to the experiment data, relationship among desorption gas quantities, sample ultimate temperature and SEY is established. Comparing with experiment results, this synthetic semi-empirical physical model can describe the SEY of metal better than former formulas, especially in the aspect of surface contaminated states. The proposed synthetic semi-empirical physical model and presented results in this paper can be helpful for further studying SE emission, and offer an available method for estimating and taking advantage of SE emission accurately.展开更多
The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented...The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster type. The behavior of main carrier mobility depending on temperature and irradiation dose is analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point radiation defects with transition into cluster formation. Dose dependencies of electrical conductivity and carrier mobility for samples of various specific resistivities are given.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51871222,52171021,and 51801214)Liaoning Provincial Natural Science Foundation(2019-MS-335)the research fund of SYNL。
文摘In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.
基金National Natural Science Foundation of China(11705277)Science and Technology Research Project of Hubei Provincial Department of Education(Q20222607)Graduate Quality Engineering Support Project of Hubei University of Arts and Science(YZ3202405)。
文摘The introduction of strain In_(x)Ga_(1-x)As channel with high In content increases the confinement of the two-dimensional electron gas(2DEG)and further improves the high-frequency performance of InGaAs/InAlAs/InP HEMTs.The effect of In_(x)Ga_(1-x)As channel with different In contents on electron irradiation tolerance of InP-based HEMT structures in terms of 2DEG mobility and density has been investigated.The experiment results show that,after the same high electron irradiation dose,the 2DEG mobility and density in InP-based HEMT structures with strain In_(x)Ga_(1-x)As(x>0.53)channel decrease more dramatically than that without strain In_(0.53)Ga_(0.47)As channel.Moreover,the degradation of 2DEG mobility and density becomes more severe as the increase of In content and strain in the In_(x)Ga_(1-x)As channel.The research results can provide some suggestions for the design of radiation-resistant InP-based HEMTs.
基金Project (50971087) supported by the National Natural Science Foundation of ChinaProject (BK2012715) supported by the Basic Research Program (Natural Science Foundation) of Jiangsu Province, China+1 种基金Project (10371800) supported by the Research Council of Norway under the NEW Light (NEWLIGHT) Metals of the Strategic Area (SA) MaterialsProject (11JDG070) supported by the Senior Talent Research Foundation of Jiangsu University, China
文摘In order to explore the exact nature of deformation defects previously observed in nanostructured Al-Mg alloys subjected to severe plastic deformation, a more thorough examination of the radiation effect on the formation of the planar defects in the high pressure torsion (HPT) alloys was conducted using high-resolution transmission electron microscopy (HRTEM). The results show that high density defects in the HRTEM images disappear completely when these images are exposed under the electron beam for some duration of time. At the same time, lattice defects are never observed within no-defect areas even when the beam-exposure increases to the degree that holes appear in the areas. Therefore, it is confirmed that the planar defects observed in the HPT alloys mainly result from the significant plastic deformation and are not due to the radiation effect during HRTEM observation.
基金Project(91026018)supported by the National Natural Science Foundation of ChinaProject(20110111110015)supported by the Doctoral Fund of Ministry of Education of China
文摘Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.
基金supported by the National Natural Science Foundation of China(Nos.11775138,11675098,and 41473089)Innovation Program of the Shanghai Municipal Education Commission(No.13YZ017)Program for Changjiang Scholars and Innovative Research Teams in Universities(No.IRT13078)
文摘Polylactic acid(PLA)has been extensively applied in the fields of biology and renewable biodegradable materials because of its superior biodegradability.PLA has excellent potential as a renewable biodegradable adsorbent in wastewater treatment.However,its poor photocatalytic properties have hindered its practical application.In this study,polyvinylpyrrolidone(PVPP)or glutaraldehyde(GA)was utilized as an adhesive agent to prepare Ag/AgCl/PLA photocatalysts with highly efficient visible light photocatalysis on a PLA fabric by utilizing the electron beam irradiation method.The photocatalytic activities of the Ag/AgCl/PLA samples were examined under visible light irradiation to analyze the degradation of methylene blue(MB)and chloramphenicol(CPL).Our experimental results demonstrate that the nanomaterial Ag/AgCl was uniformly distributed on the PLA fiber surface;this can be attributed to the effects of the crosslinking PVPP or GA.Under electron beam irradiation,adding crosslinking PVPP(or GA)is beneficial to the loading of Ag/AgCl onto the PLA.For the composite Ag/AgCl/PLA,the degradation rate for MB was as high as 97% after 150 min of visible light irradiation.The addition of 4 mg/ml of Ag/AgCl solution resulted in the greatest photocatalytic activity for CPL,and we advanced the possible degradation pathways of CPL with the best sample.Additionally,the as-prepared composite Ag/Ag Cl/PLA exhibited favorable antibacterial activity against E.coli and S.aureus,with a bacterial removal rate of >77%.
文摘A space monocrystalline silicon(c-Si) solar cell under low-energy(〈 1 MeV) electron irradiation was investigated using noncontact photocarrier radiometry(PCR). Monte Carlo simulation(MCS) was employed to characterize the effect of different energy electron irradiation on the c-Si solar cell. The carrier transport parameters(carrier lifetime, diffusion coefficient, and surface recombination velocities) were obtained by best fitting the experimental results with a theoretical one-dimensional two-layer PCR model. The results showed that the increase of the irradiation electron energy caused a large reduction of the carrier lifetime and diffusion length. Furthermore, the rear surface recombination velocity of the Si:p base of the solar cell at the irradiation electron energy of 1 Me V was dramatically enhanced due to 1 MeV electron passing through the whole cell. Short-circuit current(I sc) degradation evaluated by PCR was in good agreement with that obtained by electrical measurement.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175140)the Fundamental Research Funds for the Central Universities
文摘We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons. The dynamic spatial distribution of charges is obtained and validated by existing experimental data. Our simulations show that excess negative charges are concentrated near the edge of the electron range. However, the formed region of high charge density may extend to the surface and bottom of a kapton sample, due to the effects of the electric field on electron scattering and charge transport, respectively. Charge trapping is then demonstrated to significantly influence the charge motion. The charge distribution can be extended to the bottom as the trap density decreases. Charge accumulation is therefore balanced by the appearance and increase of leakage current. Accordingly, our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175140 and 11004157)the Foundation of National Key Laboratory of Space Microwave Technology of China(Grant No.9140C530101130C53013)
文摘In this study, using a comprehensive numerical simulation of charge and discharge processes, we investigate the formation and evolution of negative charge and discharge characteristics of a grounded PMMA film irradiated by a non- focused electron beam. Electron scattering and transport processes in the sample are simulated with the Monte Carlo and the finite-different time-domain (FDTD) methods, respectively. The properties of charge and discharge processes are presented by the evolution of internal currents, charge quantity, surface potential, and discharge time. Internal charge accumulation in the sample may reach saturation by primary electron (PE) irradiation providing the charge duration is enough. Internal free electrons will run off to the ground in the form of leakage current due to charge diffusion and drift during the discharge process after irradiation, while trapped electrons remain. The negative surface potential determined by the charging quantity decreases to its saturation in the charge process, and then increases in the discharge process. A larger thickness of the PMMA film will result in greater charge amount and surface potential in charge saturation and in final discharge state, while the electron mobility of the material has little effects on the final discharge state. Moreover, discharge time is less for smaller thickness or larger electron mobility. The presented results can be helpful for estimating and weakening the charging of insulating samples especially under the intermittent electron beam irradiation in related surface analysis or measurement.
基金Funded by the National Natural Science Foundation of China(No.51073098)State Key Laboratory of Polymer Material Engineering (Sichuan University)(Nos.KF200901 and 2030925123008)
文摘Different doses of electron beam was imposed on the polyacrylonitrile(PAN) precursor fibers before the fibers were stabilized. The effect of electron beam irradiation on the chemical structure, crystallite size of PAN precursor fibers and density, oxygen content, transverse section morphology of the stabilized fibers in the stabilization process were characterized by the use of fourier transform infrared spectroscopy(FTIR), float- sink procedure, elemental analysis and scanning electron microscope(SEM), respectively. The results showed that the extent of cyclization was increased and the crystallite size was decreased. We found that electron beam irradiation could accelerate the cyelization reaction and stabilization reaction in the stabilization process through density test and elemental analysis. We also found that the effect of 200 kGy electron beam irradiated fibers with the stabilization time of 75 min was better than that of the original stabilized fibers with 90 min. These results demonstrate that electron beam irradiation can shorten the stabilization time.
文摘The DC characteristics of SiGe HBT irradiated at different electron dose havebeen studied in a comparison with those of Si B JT. Generally, I_b and I_b - I_(b0) increase, I_c,I_c -I_(c0) and its +/- transition V_(be) as well as DC current gain ft decreases with increasingdose; increase of I_b -I_(b0) with increasing dose for Si BIT is much larger than that for SiGe HBT;beta increases with V_(be) or I_b, but decreases at I_b < 0.25 mA with I_b, and congregates athigher dose; and a damage factor d(beta) is much less at the same dose for SiGe HBT than for Si BJT.SiGe HBT has much better anti-radiation performance than Si BJT. Some anomalous phenomena forincrease of I_c, I_c -I_(c0), I_b -I_(b0) and beta at low dose have been found. Some electron trapshave been measured. The mechanism of changes of characteristics is discussed.
基金supported by the National Natural Science Foundation of China(Grant No.51503053)
文摘Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requirements for space appli- cation in electronic components, it is necessary to study structural changes and damage mechanisms of multi-walled carbon nanotubes (MWCNTs), caused by the irradiations of 70 and 110 keV electrons. In the paper, the changes of structure and damage mechanisms in the irradiated MWCNTs, induced by the irradiations of 70 and 110 keV electrons, are investigated. The changes in surface morphology and structure of the irradiated MWCNT film are characterized using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, x-ray diffraction analysis (XRD), and electron paramagnetic resonance (EPR) spectroscopy. It is found that the MWCNTs show different behaviors in structural changes after 70 and 110 keV electron irradiation due to different damage mechanisms. SEM results reveal that the irra- diation of 70 keV electrons does not change surface morphology of the MWCNT film, while the irradiation of 110 keV electrons with a high fluence of 5 x 1015 cm-2 leads to evident morphological changes, such as the formation of a rough surface, the entanglement of nanotubes and the shrinkage of nanotubes. Based on Raman spectroscopy, XPS, and XRD analyses, it is confirmed that the irradiation of 70 keV electrons increases the interlayer spacing of the MWCNTs and disorders their structure through electronic excitations and ionization effects, while the irradiation of 110 keV electrons obviously reduces the interlayer spacing of the MWCNTs and improves their graphitic order through knock-on atom dis- placements. The improvement of the irradiated MWCNTs by 110 keV electrons is attributed to the restructuring of defect sites induced by knock-on atom displacements. EPR spectroscopic analyses reveal that the MWCNTs exposed to both 70 keV electrons and 110 keV electrons suffer ionization damage to some extent.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0100601)the National Natural Science Foundation of China(Grant Nos.61674169 and 61974159).
文摘Effective improvement in electrical properties of NO passivated SiC/SiO2 interface after being irradiated by electrons is demonstrated.The density of interface traps after being irradiated by 100-kGy electrons decreases by about one order of magnitude,specifically,from 3×1012 cm-2·eV-1 to 4×1011 cm-2·eV-1 at 0.2 eV below the conduction band of 4H-SiC without any degradation of electric breakdown field.Particularly,the results of x-ray photoelectron spectroscopy measurement show that the C-N bonds are generated near the interface after electron irradiation,indicating that the carbon-related defects are further reduced.
基金supported by the National Natural Science Foundation of China(Grant No.51802056)the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe Key Laboratory of Micro-systems and Micro-structures Manufacturing(Harbin Institute of Technology),Ministry of Education,China。
文摘Lead zirconate titanate piezoelectric ceramics have important applications in space and aerospace technology,but the effect and physical mechanism of charged particle radiation on their performance yet to be clarified.In this study,we characterized PbZr_(0.52)Ti_(0.48)O_(3)(PZT)thin films,and changes in the ferroelectric properties of the films before and after electron and proton irradiation were investigated.The natural and heat treatment recoverability of the ferroelectric properties were studied,and the damages and mechanisms of different types of radiation in PZT films were also investigated.The results show that,in addition to ionization damages,electron irradiation causes certain structural damage on the PZT film,and the large structural damage caused by proton irradiation reduces drastically the ferroelectricity of the PZT film.
文摘A method together with a new formula were developed for measuring the vacancy migration energy on HVEM considering the effect of surface sink of specimen on point defects.The va- cancy migration energy may be calculated through the loop growth rate under electron irradiation at various temperatures.
基金This project is financially supported by the Narional Natural Science Foundation of China(Nos 10375034 and 10075029) and the Basic Research Foundation of Tsinghua University (No. JC2002058).
文摘Changes of the average brightness and non-uniformity of dark output images,and quality of pictures captured under natural lighting for the color CMOS digital image sensorsirradiated at different electron doses have been studied in comparison to those from theγ-irradiated sensors. For the electron-irradiated sensors, the non-uniformity increases obviouslyand a small bright region on the dark image appears at the dose of 0.4 kGy. The average brightnessincreases at 0.4 kGy, increases sharply at 0.5 kGy. The picture is very blurry only at 0.6 kGy,showing the sensor undergoes severe performance degradation. Electron radiation damage is much moresevere than γ radiation damage for the CMOS image sensors. A possible explanation is presented inthis paper.
基金Project supproted by the National Natural Science Foundation of China(60025409 and 50472068)National"863"High Technology Plan(2001AA311080)Program for New Century Excellent Talents in Shangdong University
文摘Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.
文摘The evolution of secondary defects and the characteristics of the void swelling of electrons irradiated Oxide Dispersion Strengthened Ferritic Steels (ODS steels) after recrystallization were studied. It was found that recrystallization increases the void swelling of ODS steel as compared with solution and injected He+ + D+ states.There are two size ranges of voids formed in recrystallized ODS steel during irradiation, and bubbles can be preferential sites for the void formation. Polycrystal with low density of defects is formed, and sites where point defects disappear by irradiation decrease. This is the main reason for the increase of void swelling of ODS steel after recrystallization.
文摘In a previous study, structure of silica gels prepared in a high magnetic field was investigated. While a direct application of such anisotropic silica gels is for an optical anisotropic medium possessing chemical resistance, we show here their possibility of medium in materials processing. In this direction, for example, silica hydrogels have so far been used as media of crystal growth. In this paper, as opposed to the soft-wet state, dried silica gels have been investigated. We have found that lead (II) nanocrystallites were formed induced by electron irradiation to lead (ll)-doped dried Hydrogels made from a sodium metasilicate solution doped with silica gels prepared in a high magnetic field such as B = 10 T. lead (II) acetate were prepared. The dried specimens were irradiated by electrons in a transmission electron microscope environment. Electron diffraction patterns indicated the crystallinity of lead (II) nanocrystallites depending on B. An advantage of this processing technique is that the crystallinity can be controlled through the strength of magnetic field B applied during gel preparation. Specific skills are not required to control the strength of magnetic field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1537211 and 11675278)the China Postdoctoral Science Foundation(Grant No.2016M602944XB)
文摘Calculations of secondary electron yield(SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface contamination states of real sample result in notable difference between simulations and experiments. In this paper, in order to calculate SEY of metal under complicated surface state accurately, we propose a synthetic semi-empirical physical model. The processes of excitation of internal secondary electron(SE) and movement toward surface can be simulated using this model.This model also takes into account the influences of incident angle and backscattering electrons as well as the surface gas contamination. In order to describe internal electronic states accurately, the penetration coefficient of incident electron is described as a function of material atom number. Directions of internal electrons are set to be uniform in each angle. The distribution of internal SEs is proposed by considering both the integration convergence and the cascade scattering process.In addition, according to the experiment data, relationship among desorption gas quantities, sample ultimate temperature and SEY is established. Comparing with experiment results, this synthetic semi-empirical physical model can describe the SEY of metal better than former formulas, especially in the aspect of surface contaminated states. The proposed synthetic semi-empirical physical model and presented results in this paper can be helpful for further studying SE emission, and offer an available method for estimating and taking advantage of SE emission accurately.
文摘The studies of the influence of pico-second (4 × 10<sup>-13</sup> sec.) pulse electron irradiation with energy of 3.5 MeV on the electrical-physical properties of silicon crystals (n-Si) are presented. It is shown that in spite of relatively low electron irradiation energy, induced radiation defects are of cluster type. The behavior of main carrier mobility depending on temperature and irradiation dose is analyzed and charge carriers’ scattering mechanisms are clarified: on ionized impurities, on point radiation defects with transition into cluster formation. Dose dependencies of electrical conductivity and carrier mobility for samples of various specific resistivities are given.