Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor d...Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.展开更多
The China Fusion Engineering Test Reactor(CFETR) is under design, which aims to bridge the gaps between ITER and the future fusion power plant. The neutron wall loading(NWL) depends on the neutron source distribut...The China Fusion Engineering Test Reactor(CFETR) is under design, which aims to bridge the gaps between ITER and the future fusion power plant. The neutron wall loading(NWL) depends on the neutron source distribution, which depends on the density and temperature profiles. In this paper, we calculate the NWL of CFETR and study the effects of density and temperature profiles on the NWL distribution along the first wall. Our calculations show that for a 200 MW fusion power, the maximum NWL is at the outer midplane and the vaule is about 0.4 MW m^-2. The density and temperature profiles have little effect on the NWL distribution. The value of NWL is determined by the total fusion power.展开更多
Utilization of Micro Hydro Power Plant at the Gunung Halu case study type run-off the river is a household use only in the afternoon,around 5 pm until bedtime at about 10 pm.Therefore,more than 75%of the energy is los...Utilization of Micro Hydro Power Plant at the Gunung Halu case study type run-off the river is a household use only in the afternoon,around 5 pm until bedtime at about 10 pm.Therefore,more than 75%of the energy is lost.This case study lost power which can be used as a by-product,such as for drying coffee beans.In this case study,a design was carried out to obtain by-products and improve power quality in the electrical system.In addition,they complain about the poor quality of power controlled by frequency using Triac-Based Electronic Dummy Load Control.The heat from the dummy load in the case study is used as a by-product.MHP with a minimum power of 20 kW,and the usage time of customer service is about 6 h.The energy for the by-products is about 360 kWh/day,and the power quality improved by using Triac-Based Electronic Load Control and Hysteresis Current Control for the active filter.As a result,the power factor is close to one,the generator current harmonics is less than 2%,and the voltage harmonics is less than 5%.展开更多
文摘Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.
基金supported by the National Magnetic Confinement Fusion Program(Grant Nos.2014GB106001,2014GB110003 and 2013GB111000)by National Natural Science Foundation of China(Grant No.11675221)
文摘The China Fusion Engineering Test Reactor(CFETR) is under design, which aims to bridge the gaps between ITER and the future fusion power plant. The neutron wall loading(NWL) depends on the neutron source distribution, which depends on the density and temperature profiles. In this paper, we calculate the NWL of CFETR and study the effects of density and temperature profiles on the NWL distribution along the first wall. Our calculations show that for a 200 MW fusion power, the maximum NWL is at the outer midplane and the vaule is about 0.4 MW m^-2. The density and temperature profiles have little effect on the NWL distribution. The value of NWL is determined by the total fusion power.
基金This research was funded by Politeknik Negeri Bandung for funding this research in the 2021 budget year through a grant for applied research,Number B/78.14/PL1.R7/PG.00.03/2021.
文摘Utilization of Micro Hydro Power Plant at the Gunung Halu case study type run-off the river is a household use only in the afternoon,around 5 pm until bedtime at about 10 pm.Therefore,more than 75%of the energy is lost.This case study lost power which can be used as a by-product,such as for drying coffee beans.In this case study,a design was carried out to obtain by-products and improve power quality in the electrical system.In addition,they complain about the poor quality of power controlled by frequency using Triac-Based Electronic Dummy Load Control.The heat from the dummy load in the case study is used as a by-product.MHP with a minimum power of 20 kW,and the usage time of customer service is about 6 h.The energy for the by-products is about 360 kWh/day,and the power quality improved by using Triac-Based Electronic Load Control and Hysteresis Current Control for the active filter.As a result,the power factor is close to one,the generator current harmonics is less than 2%,and the voltage harmonics is less than 5%.