期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on Silicon Carbide Dispersion-Reinforced Hypereutectic Aluminum-Silicon Electronic Packaging Materials
1
作者 Ruixi Guo Yunhao Hua Tianze Jia 《Journal of Electronic Research and Application》 2024年第2期86-94,共9页
The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon elect... The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties. 展开更多
关键词 Silicon carbide electronic packaging materials Powder metallurgy Mechanical properties Composite materials
下载PDF
Literature Review of Electronic Packaging Technology and Residual Stress
2
作者 Wenji Ai Shanshui Zheng +1 位作者 Xianfeng Zeng Huibing Cheng 《Open Journal of Applied Sciences》 2023年第11期2172-2182,共11页
The rapid development of the electronic information industry brings to the irreplaceable role of electronic components, therefore the search of a more reliable packaging material has become increasingly important. In ... The rapid development of the electronic information industry brings to the irreplaceable role of electronic components, therefore the search of a more reliable packaging material has become increasingly important. In the electronic packaging system, the failure phenomenon caused by residual stress is one of the key factors restricting the development of electronic packaging technology. In order to use the in-situ characterization technology to explore the residual stress inducing mechanism and failure mechanism of epoxy-based advanced packaging materials, this paper gives a review of related previous research, and lays a theoretical foundation for the upcoming research. The classification and generation mechanism of residual stress are clarified in this paper, which provides data support for future related research. 展开更多
关键词 electronic packaging material Residual Stress EPOXY Failure Mechanisms
下载PDF
Preparation,crystallization,and wetting of ZnO-Al_2O_3-B_2O_3-SiO_2 glass-ceramics for sealing to Kovar 被引量:4
3
作者 Mao Wu Xin-bo He Zhuo-shen Shen Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第5期586-591,共6页
A novel type of ZnO-Al2O3-B2O3-SiO2 glass-ceramics sealing to Kovar in electronic packaging was developed, whose thermal expansion coefficient and electrical resistance are 5.2× 10^-6/℃ and over 1×10^13 Ω&... A novel type of ZnO-Al2O3-B2O3-SiO2 glass-ceramics sealing to Kovar in electronic packaging was developed, whose thermal expansion coefficient and electrical resistance are 5.2× 10^-6/℃ and over 1×10^13 Ω·cm, respectively. The major crystalline phases in the glass-ceramic seals were ZnAl2O4, ZnB2O4, and NaSiAl2O4. The dielectric resistance of the glass-ceramic could be remarkably enhanced through the control of alkali metal ions into crystal lattices. It was found that crystallization happened first on the surface of the sample, leaving the amorphous phase in the inner, which made the glass suitable for sealing. The glass-ceramic showed better wetting on the Kovar surface, and sealing atmosphere and temperature had great effect on the wetting angle. Strong interracial bonding was obtained, which was mainly attributed to the interracial reaction between SiO2 and FeO or Fe3O4. 展开更多
关键词 electronic packaging materials GLASS-CERAMIC CRYSTALLIZATION WETTING SEALING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部