期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimizing the electronic spin state and delocalized electron of NiCo_(2)(OH)_(x)/MXene composite by interface engineering and plasma boosting oxygen evolution reaction
1
作者 Jingyao Xu Xia Zhong +2 位作者 Xiaofeng Wu Ying Wang Shouhua Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期129-140,I0004,共13页
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope... The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future. 展开更多
关键词 Transition metal compounds electronic state control of surface/interface Electron spin state Delocalized electron Electrocatalytic material
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部