期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates
1
作者 王玉冰 尹伟红 +5 位作者 韩勤 杨晓红 叶焓 王帅 吕倩倩 尹冬冬 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第6期84-86,共3页
We conduct a study on the superlinear transport of multilayer graphene channels that partially or completely locate on silicon which is pre-etched by inductively coupled plasma (ICP). By fabricating a multilayer-gra... We conduct a study on the superlinear transport of multilayer graphene channels that partially or completely locate on silicon which is pre-etched by inductively coupled plasma (ICP). By fabricating a multilayer-graphene field-effect transistor on a Si/SiO2 substrate, we obtain that the superlinearity results from the interaction between the multilayer graphene sheet and the ICP-etched silicon, In addition, the observed superlinear transport of the device is found to be consistent with the prediction of Schwinger's mechanism. In the high bias regime, the values of a increase draxnatically from 1.02 to 1.40. The strength of the electric field corresponding to the on-start of electron-hole pair production is calculated to be 5 × 10^4 Vim. Our work provides an experimental observation of the nonlinear transport of the multilayer graphene. 展开更多
关键词 The Nonlinear electronic Transport in Multilayer Graphene on Silicon-on-Insulator substrates
下载PDF
Impact of substrate injected hot electrons on hot carrier degradation in a 180-nm NMOSFET
2
作者 梁斌 陈建军 池雅庆 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期502-506,共5页
Although hot carriers induced degradation of NMOSFETs has been studied for decades, the role of hot electron in this process is still debated. In this paper, the additional substrate hot electrons have been intentiona... Although hot carriers induced degradation of NMOSFETs has been studied for decades, the role of hot electron in this process is still debated. In this paper, the additional substrate hot electrons have been intentionally injected into the oxide layer to analyze tile role of hot electron in hot carrier degradation. The enhanced degradation and the decreased time exponent appear with the injected hot electrons increasing, the degradation increases from 21.80% to 62.00% and the time exponent decreases from 0.59 to 0.27 with Vb decreasing from 0 V to -4 V, at the same time, the recovery also becomes remarkable and which strongly depends on the post stress gate bias Vg. Based on the experimental results, more unrecovered interface traps are created by the additional injected hot electron from the breaking Si-H bond, but the oxide trapped negative charges do not increase after a rapid recovery. 展开更多
关键词 substrate hot electron injection hot carrier injection (HCI) degradation interface trap oxidetrapped charge
下载PDF
Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition
3
作者 全汝岱 张进成 +3 位作者 张雅超 张苇航 任泽阳 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期145-148,共4页
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct... Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively. 展开更多
关键词 GAN IS in of Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire substrates by Pulsed Metal Organic Chemical Vapor Deposition by on
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部