The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid moderniz...The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid modernization.A fundamental question is then asked about the investment priority.Six basic characteristics are reviewed,leading to the composition of structured microgrids as the basic functional cell of a modern grid.One example of fractal radial structure and one fractal meshed structure are presented.The likely evolution path is then proposed together with basic technology sets.Specific foundation technologies are discussed in detail,including adiabatic power conversion,3MC technology,medium voltage conversion,distribution-level electronic power transformer and FACTs hardware integration,and back-to-back converters as a universal interconnect element.The rapidly emerging on-wire sensing technology is also discussed.It is pointed out that the distribution-level large electronic power transformer will provide a key component to enable hybrid ac/dc grid flow control and ancillary support for a flexible electronic transmission and distribution(eT&D)systems.展开更多
This paper investigates theoretically the electronic transmission spectra of the three terminal pyrene molecular bridge and the quantum current distribution on each bond by the tight-binding model based on nonequilibr...This paper investigates theoretically the electronic transmission spectra of the three terminal pyrene molecular bridge and the quantum current distribution on each bond by the tight-binding model based on nonequilibrium Green's function and the quantum current density approach, in which one π molecular orbital is taken into account per carbon atom when the energy levels and HOMO-LUMO gap are obtained. The transmission spectra show that the electronic transmission of the three terminal pyrene molecular bridge depends obviously on the incident electronic energy and the pyrene eigenenergy. The symmetrical and oscillation properties of the transmission spectra are illustrated. A novel plus-minus energy switching function is found. The quantum current distribution shows that the loop currents inside the pyrene are induced, and some bond currents are much larger than the input and the output currents. The reasons why the loop currents and the larger bond currents are induced are the phase difference of the atomic orbits and the degeneracy of the molecular orbits. The calculations illustrate that the quantum current distributions are in good agreement with Kirchhoff quantum current conservation law.展开更多
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie...Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme...The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambigu...Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.展开更多
Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research i...Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed.展开更多
AIM: To evaluate the effect of propolis administration on the healing of colon anastomosis with light and transmission electron microscopes. METHODS: Forty-eight Wistar-AIbino female rats were divided into two group...AIM: To evaluate the effect of propolis administration on the healing of colon anastomosis with light and transmission electron microscopes. METHODS: Forty-eight Wistar-AIbino female rats were divided into two groups and had colon resection and anastomosis. In group Ⅰ, rats were fed with standard rat chow pre- and postoperatively. The rats in group Ⅱ were fed with standard rat chow and began receiving oral supplementation of propolis 100 mg/kg per day beginning 7 d before the operation and continued until they were sacrificed. Rats were sacrificed 1, 3, 7 and 14 d after operation, and anastomotic bursting pressures measured. After the resection of anastomotic segments, histopathological examination was performed with light and transmission electron microscopes by two blinded histologists and photographed. RESULTS: The colonic bursting pressures of the propolis group were statistically significantly better than the control group. UItrastructural histopathological analysis of the colon anastomosis revealed that propotis accelerated the phases of the healing process and stimulated mature granulation tissue formation and collagen synthesis of fibroblasts. CONCLUSION: Bursting pressure measurements and ultra structural histopathological evaluation showed that administration of propolis accelerated the healing of colon anastomosis following surgical excision.展开更多
With the progress of modern transmission elec- tron microscopy (TEM) and development of dedicated func- tional TEM specimen holders, people can now manipulate a nano-object with nanometer-range precision and simulta...With the progress of modern transmission elec- tron microscopy (TEM) and development of dedicated func- tional TEM specimen holders, people can now manipulate a nano-object with nanometer-range precision and simulta- neously acquire mechanical data together with atomic-scale structural information. This advanced methodology is play- ing an increasingly important role in nanomechanics. The present review summarizes relevant studies on the in situ in- vestigation of mechanical properties of various nanomateri- als over the past decades. These works enrich our knowledge not only on nanomaterials (such as carbon nanotubes, car- bon onions, boron nitride nanotubes, silicon nanowires and graphene, etc.) but also on mechanics at the nanoscate.展开更多
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigati...Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigating the lithium-ion battery(LIB) materials. The present perspective paper focuses on several LIB related aspects that are recently revealed by using TEM. Finally, we present outlook on the future directions of TEM for LIB research and development.展开更多
Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationshi...Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationship with the projected atom columns. This allows the determination of the geometry of the projected unit cell without comparison with image simulations. The fast procedure is particularly suited for the analysis of large areas. The software package LADIA is written in the PV-WAVE code and provides all necessary tools for image processing and analysis. Image intensity peaks are determined by a cross-correlation technique, which avoids problems from noise in the low spatial frequency range. The lower limit of strain that can be detected at a sampling rate of 44 pixels/nm is≈2%.展开更多
This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current dens...This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm^2 has been obtained for diodes with AlAs barriers of ten monolayers, and an Ino.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.展开更多
Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property rel...Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.展开更多
This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation o...This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation of the rough endoplasmic reticulum (RER) took place, the polyribosomes disaggregated. And then, the Golgi complex and the endoplasmic reticulum dilated. The cytoplasmic matrix presented and inhomogeneous apperance. Finally, the biomembrane loosed and fractured.The cell nuclei presented the karyorrhexis.展开更多
The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver na...The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.展开更多
Growth and ordering of coherently strained Ge-rich islands in Ge/Si single layer and multilayer systems and the influence of island arrangements on the evolutio n of the surface morphology of Si cap layers during depo...Growth and ordering of coherently strained Ge-rich islands in Ge/Si single layer and multilayer systems and the influence of island arrangements on the evolutio n of the surface morphology of Si cap layers during deposition by low-pressure c hemical vapour deposition(LPCVD) on Si(001) substrates at 700℃ have been invest igated by TEM of cross-section and plan-view specimens. At distances between the Ge layers of 35-50nm, vertical order of GeSi islands is observed for Ge-Si bila yer systems and for Ge-Si multilayer systems consisting of 5 layer pairs whereas lateral ordering parallel to <100> substrate directions is observed for the lat ter case only. In agreement with earlier results the vertical ordering in the mu ltilayer system can be understood as result of the elastic interaction between i sland nuclei forming in the layers with close islands in a buried layer below. T he lateral ordering along <100> may be attributed to the anisotropy of the elast ic interaction. Characteristic for all Si surfaces are the spatial correlation b etween the presence of island-induced lattice strain and the appearance of array s of larger square-shaped pyramids with distinct faceting and facet edges along <110>. The results reflect the importance of the control of growth parameters an d of the island-induced strain state for the evolution of the Si top layer surfa ce morphology during LPCVD growth.展开更多
Shapes, dimensions, arrangements and the microstructure of self-assembled island s fabricated by low-pressure chemical vapour deposition (LPCVD) of Ge at 700℃ o nto Si(110) substrates have been investigated for diffe...Shapes, dimensions, arrangements and the microstructure of self-assembled island s fabricated by low-pressure chemical vapour deposition (LPCVD) of Ge at 700℃ o nto Si(110) substrates have been investigated for different nominal Ge coverage by transmission electron microscopy (TEM) of plan-view and cross-section specime ns and have been compared with photoluminescence (PL) measurements of Si-capped layer samples. The transition from the 2-dimensional layer to the 3-dimensional island growth mode takes place for a Ge deposition of nominally less than 2 mono layers. Upon this transition, many coherent islands and few larger islands with extended defects are observed. The coherent islands possess a dome-like shape an d lateral sizes up to 130nm. Photoluminescence spectra show island-related peaks whose energy positions are shifted towards lower energy with higher Ge coverage .展开更多
The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy....The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.展开更多
文摘The challenges and the path towards a(more)electronic transmission and distribution(eT&D)is presented in this paper.The challenges are first identified together with key stakeholders in the drive for grid modernization.A fundamental question is then asked about the investment priority.Six basic characteristics are reviewed,leading to the composition of structured microgrids as the basic functional cell of a modern grid.One example of fractal radial structure and one fractal meshed structure are presented.The likely evolution path is then proposed together with basic technology sets.Specific foundation technologies are discussed in detail,including adiabatic power conversion,3MC technology,medium voltage conversion,distribution-level electronic power transformer and FACTs hardware integration,and back-to-back converters as a universal interconnect element.The rapidly emerging on-wire sensing technology is also discussed.It is pointed out that the distribution-level large electronic power transformer will provide a key component to enable hybrid ac/dc grid flow control and ancillary support for a flexible electronic transmission and distribution(eT&D)systems.
基金Project supported by the State Key Development Program for Basic Research of China (973 Project, Grant No 2003CB716204)the International Corporation Project of the Education Department (Grant No 20060360563)+1 种基金the Key Laboratory of Advanced Photonic and Electronic Materials of Jiangsu Province (Grant No BM2003202)the State Key Laboratory of Solid State Microstructures in Nanjing University
文摘This paper investigates theoretically the electronic transmission spectra of the three terminal pyrene molecular bridge and the quantum current distribution on each bond by the tight-binding model based on nonequilibrium Green's function and the quantum current density approach, in which one π molecular orbital is taken into account per carbon atom when the energy levels and HOMO-LUMO gap are obtained. The transmission spectra show that the electronic transmission of the three terminal pyrene molecular bridge depends obviously on the incident electronic energy and the pyrene eigenenergy. The symmetrical and oscillation properties of the transmission spectra are illustrated. A novel plus-minus energy switching function is found. The quantum current distribution shows that the loop currents inside the pyrene are induced, and some bond currents are much larger than the input and the output currents. The reasons why the loop currents and the larger bond currents are induced are the phase difference of the atomic orbits and the degeneracy of the molecular orbits. The calculations illustrate that the quantum current distributions are in good agreement with Kirchhoff quantum current conservation law.
文摘Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金Funded by the National Natural Science Foundation of China(No.52103285)the 111 National Project(No.B20002)。
文摘The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
基金Natural Science Foundation of Hebei Province,Grant/Award Number:F2021203097China Postdoctoral Science Foundation,Grant/Award Numbers:2021M702756,2023T160551National Natural Science Foundation of China,Grant/Award Numbers:51971245,52022088。
文摘Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.
基金the Projects of Science and Technology Commission of Shanghai Municipality(19ZR1473800 and 14DZ2260800)the Shanghai Rising-Star Program(17QA1401400)+1 种基金Young Elite Scientists Sponsorship Program by CAST(YESS)the Fundamental Research Funds for the Central Universities.
文摘Non-volatile memory(NVM)devices with non-volatility and low power consumption properties are important in the data storage field.The switching mechanism and packaging reliability issues in NVMs are of great research interest.The switching process in NVM devices accompanied by the evolution of microstructure and composition is fast and subtle.Transmission electron microscopy(TEM)with high spatial resolution and versatile external fields is widely used in analyzing the evolution of morphology,structures and chemical compositions at atomic scale.The various external stimuli,such as thermal,electrical,mechanical,optical and magnetic fields,provide a platform to probe and engineer NVM devices inside TEM in real-time.Such advanced technologies make it possible for an in situ and interactive manipulation of NVM devices without sacrificing the resolution.This technology facilitates the exploration of the intrinsic structure-switching mechanism of NVMs and the reliability issues in the memory package.In this review,the evolution of the functional layers in NVM devices characterized by the advanced in situ TEM technology is introduced,with intermetallic compounds forming and degradation process investigated.The principles and challenges of TEM technology on NVM device study are also discussed.
文摘AIM: To evaluate the effect of propolis administration on the healing of colon anastomosis with light and transmission electron microscopes. METHODS: Forty-eight Wistar-AIbino female rats were divided into two groups and had colon resection and anastomosis. In group Ⅰ, rats were fed with standard rat chow pre- and postoperatively. The rats in group Ⅱ were fed with standard rat chow and began receiving oral supplementation of propolis 100 mg/kg per day beginning 7 d before the operation and continued until they were sacrificed. Rats were sacrificed 1, 3, 7 and 14 d after operation, and anastomotic bursting pressures measured. After the resection of anastomotic segments, histopathological examination was performed with light and transmission electron microscopes by two blinded histologists and photographed. RESULTS: The colonic bursting pressures of the propolis group were statistically significantly better than the control group. UItrastructural histopathological analysis of the colon anastomosis revealed that propotis accelerated the phases of the healing process and stimulated mature granulation tissue formation and collagen synthesis of fibroblasts. CONCLUSION: Bursting pressure measurements and ultra structural histopathological evaluation showed that administration of propolis accelerated the healing of colon anastomosis following surgical excision.
基金supported by the National Basic Research Program of China(973)(2011CB707601 and 2009CB623702)the National Natural Science Foundation of China(51071044,61274114,61106055 and 21243011)Gatan Scholarship for Excellence in Science
文摘With the progress of modern transmission elec- tron microscopy (TEM) and development of dedicated func- tional TEM specimen holders, people can now manipulate a nano-object with nanometer-range precision and simulta- neously acquire mechanical data together with atomic-scale structural information. This advanced methodology is play- ing an increasingly important role in nanomechanics. The present review summarizes relevant studies on the in situ in- vestigation of mechanical properties of various nanomateri- als over the past decades. These works enrich our knowledge not only on nanomaterials (such as carbon nanotubes, car- bon onions, boron nitride nanotubes, silicon nanowires and graphene, etc.) but also on mechanics at the nanoscate.
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.
文摘Transmission electron microscopy(TEM) stands out as one of the most powerful tools for characterizing materials at multiple scales and dimensions. This unique technique has nowadays been widely employed in investigating the lithium-ion battery(LIB) materials. The present perspective paper focuses on several LIB related aspects that are recently revealed by using TEM. Finally, we present outlook on the future directions of TEM for LIB research and development.
文摘Direct strain mapping from high resolution transmission electron microscopy images is possible for coherent structures. At proper imaging conditions the intensity peaks in the image have a constant spatial relationship with the projected atom columns. This allows the determination of the geometry of the projected unit cell without comparison with image simulations. The fast procedure is particularly suited for the analysis of large areas. The software package LADIA is written in the PV-WAVE code and provides all necessary tools for image processing and analysis. Image intensity peaks are determined by a cross-correlation technique, which avoids problems from noise in the low spatial frequency range. The lower limit of strain that can be detected at a sampling rate of 44 pixels/nm is≈2%.
文摘This paper reports that InAs/In0.53Ga0.47As/AlAs resonant tunnelling diodes have been grown on InP substrates by molecular beam epitaxy. Peak to valley current ratio of these devices is 17 at 300K. A peak current density of 3kA/cm^2 has been obtained for diodes with AlAs barriers of ten monolayers, and an Ino.53Ga0.47As well of eight monolayers with four monolayers of InAs insert layer. The effects of growth interruption for smoothing potential barrier interfaces have been investigated by high resolution transmission electron microscope.
基金the Beijing Municipal High Level Innovative Team Building Program (IDHT20190503)the National Natural Science Fund for Innovative Research Groups of China (51621003)the National Natural Science Foundation of China (12074017)。
文摘Halide perovskites are strategically important in the field of energy materials. Along with the rapid development of the materials and related devices, there is an urgent need to understand the structure–property relationship from nanoscale to atomic scale. Much effort has been made in the past few years to overcome the difficulty of imaging limited by electron dose,and to further extend the investigation towards operando conditions. This review is dedicated to recent studies of advanced transmission electron microscopy(TEM) characterizations for halide perovskites. The irradiation damage caused by the interaction of electron beams and perovskites under conventional imaging conditions are first summarized and discussed. Low-dose TEM is then discussed, including electron diffraction and emerging techniques for high-resolution TEM(HRTEM) imaging. Atomic-resolution imaging, defects identification and chemical mapping on halide perovskites are reviewed. Cryo-TEM for halide perovskites is discussed, since it can readily suppress irradiation damage and has been rapidly developed in the past few years. Finally, the applications of in-situ TEM in the degradation study of perovskites under environmental conditions such as heating,biasing, light illumination and humidity are reviewed. More applications of emerging TEM characterizations are foreseen in the coming future, unveiling the structural origin of halide perovskite’s unique properties and degradation mechanism under operando conditions, so to assist the design of a more efficient and robust energy material.
文摘This paper reports the ultrastructural changes of trichomonas vaginaiis (T. vag. ) under the action of s-(-)usnic acid sodium in vitro. These changes can be shown by the following results:At first, the degranulation of the rough endoplasmic reticulum (RER) took place, the polyribosomes disaggregated. And then, the Golgi complex and the endoplasmic reticulum dilated. The cytoplasmic matrix presented and inhomogeneous apperance. Finally, the biomembrane loosed and fractured.The cell nuclei presented the karyorrhexis.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501358)the Fundamental Research Funds for the Central Universities,China
文摘The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.
文摘Growth and ordering of coherently strained Ge-rich islands in Ge/Si single layer and multilayer systems and the influence of island arrangements on the evolutio n of the surface morphology of Si cap layers during deposition by low-pressure c hemical vapour deposition(LPCVD) on Si(001) substrates at 700℃ have been invest igated by TEM of cross-section and plan-view specimens. At distances between the Ge layers of 35-50nm, vertical order of GeSi islands is observed for Ge-Si bila yer systems and for Ge-Si multilayer systems consisting of 5 layer pairs whereas lateral ordering parallel to <100> substrate directions is observed for the lat ter case only. In agreement with earlier results the vertical ordering in the mu ltilayer system can be understood as result of the elastic interaction between i sland nuclei forming in the layers with close islands in a buried layer below. T he lateral ordering along <100> may be attributed to the anisotropy of the elast ic interaction. Characteristic for all Si surfaces are the spatial correlation b etween the presence of island-induced lattice strain and the appearance of array s of larger square-shaped pyramids with distinct faceting and facet edges along <110>. The results reflect the importance of the control of growth parameters an d of the island-induced strain state for the evolution of the Si top layer surfa ce morphology during LPCVD growth.
文摘Shapes, dimensions, arrangements and the microstructure of self-assembled island s fabricated by low-pressure chemical vapour deposition (LPCVD) of Ge at 700℃ o nto Si(110) substrates have been investigated for different nominal Ge coverage by transmission electron microscopy (TEM) of plan-view and cross-section specime ns and have been compared with photoluminescence (PL) measurements of Si-capped layer samples. The transition from the 2-dimensional layer to the 3-dimensional island growth mode takes place for a Ge deposition of nominally less than 2 mono layers. Upon this transition, many coherent islands and few larger islands with extended defects are observed. The coherent islands possess a dome-like shape an d lateral sizes up to 130nm. Photoluminescence spectra show island-related peaks whose energy positions are shifted towards lower energy with higher Ge coverage .
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11675233,11690041,11405229,11705246,and 11505243)Chinese Academy of Sciences “Light of West China” Programthe Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020412)。
文摘The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.