Electronic warfare simulation can allow the realistic evaluation of the performance ofequipments and techniques, and it can also allow the realistic training of individualsunder conditions that, in real life, might ki...Electronic warfare simulation can allow the realistic evaluation of the performance ofequipments and techniques, and it can also allow the realistic training of individualsunder conditions that, in real life, might kill them. We propose a new scheme of EWsimulation system based on SystemVue. This paper mainly expounds the structure ofsystem and the key technology of subsystem establishment. As a proof of concept, aradar electronic reconnaissance simulation experiment is explained in this paper. Andthe results verify the feasibility of the scheme.展开更多
Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization mode...Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived.展开更多
Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption ...Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.展开更多
The paper presents the possibilities of,and methods for,acquiring,analysing and processing optical signals in order to recognise,identify and counteract threats on the contemporary battleground.The main ways electroni...The paper presents the possibilities of,and methods for,acquiring,analysing and processing optical signals in order to recognise,identify and counteract threats on the contemporary battleground.The main ways electronic warfare is waged in the optical band of the electromagnetic wave spectrum have been formulated,including the acquisition of optical emitter signatures,as well as ultraviolet(UV)and thermal(IR)signatures.The physical parameters and values describing the emission of laser radiation are discussed,including their importance in terms of creating optical signatures.Moreover,it has been shown that in the transformation of optical signals into signatures,only their spectral and temporal parameters can be applied.This was confirmed in experimental part of the paper,which includes our own measurements of spectral and temporal emission characteristics for three types of binocular laser rangefinders.It has been further shown that through simple registration and quick analysis involving comparison of emission time parameters in the case of UV signatures in“solar-blind”band,various events can be identified quickly and faultlessly.The same is true for IR signatures,where the amplitudes of the recorded signal for several wavelengths are compared.This was confirmed experimentally for UV signatures by registering and then analyzing signals from several events during military exercises at a training ground,namely Rocket Propelled Grenade(RPG)launches and explosions after hitting targets,trinitrotoluene(TNT)explosions,firing armour-piercing,fin-stabilised,discarding sabots(APFSDS)or high explosive(HE)projectiles.The final section describes a proposed model database of emitters,created as a result of analysing and transforming the recorded signals into optical signatures.展开更多
To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar syst...To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.展开更多
This paper studies the radar cross section (RCS) of carrier electronic warfare airplanes. Under the typical naval operations section, the mathematical model of the radar wave's pitch angle incidence range analysis ...This paper studies the radar cross section (RCS) of carrier electronic warfare airplanes. Under the typical naval operations section, the mathematical model of the radar wave's pitch angle incidence range analysis is established. Based on the CATIA software, considering dynamic deflec- tions of duck wing leading edge flaps, flaperons, horizontal tail, and rudder, as well as aircraft with air-to-air missile, anti-radiation missile, electronic jamming pod, and other weapons, the 3D models of carrier electronic warfare airplanes Model A and Model B with weapons were established. Based on the physical optics method and the equivalent electromagnetic flow method, by the use of the RCSAnsys software, the characteristics of carrier electronic warfare airplanes' RCS under steady and dynamic flights were simulated under the UHF, X, and S radar bands. This paper researches the detection probability of aircraft by radars under the condition of electronic warfare, and com- pletes the mathematical statistical analysis of the simulation results. The results show that: The Model A of carrier electronic warfare airplane is better than Model B on stealth performance and on discover probability by radar detection effectively.展开更多
Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose...Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose tolerance requirements compared to traditional cross-eye jamming.However,the previous analysis was limited,because there are still some factors affecting the parameter tolerance of the multiple-element retrodirective cross-eye jamming(MRCJ)system and they have not been investigated completely,such as the loop difference,the baseline ratio and the jammer-to-signal ratio.This paper performs a comprehensive tolerance analysis of the MRCJ system with a nonuniformspacing linear array.Simulation results demonstrate the tolerance effects of the above influence factors and give reasonable advice for easing tolerance sensitivity.展开更多
The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase ...The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with m...Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with monopulse radar.In this paper, we propose a multi-group three-tuple crosseye jamming structure where each group contains three antenna elements with a definite phase and an amplitude relationship.Then, based on the principle of monopulse angle measurement, the error angle is deduced theoretically.Simulations show that such a multi-group three-tuple cross-eye jamming structure performs better than the multi-element cross-eye jamming structure previously proposed, and the analysis of the centroid shows that the centroid of the structure proposed in this paper is more widely distributed in space.展开更多
To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited pene...To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above.展开更多
In the state estimation of passive tracking systems, the traditional approximate expression for the Cramero-Rao lower bound (CRLB) does not take two factors into consideration, that is, measurement origin uncertaint...In the state estimation of passive tracking systems, the traditional approximate expression for the Cramero-Rao lower bound (CRLB) does not take two factors into consideration, that is, measurement origin uncertainty aad state noise. Such treatment is only valid in ideal situation but it is not feasible in actual situation. In this article, considering the two factors, the posterior Cramer-Rao lower bound (PCRLB) recursion expression for the error of bearing-only tracking is derived. Then, further analysis is carried out on the PCRLB. According to the final result, there are four main parameters that play a role in the performance of the PCRLB, that is, measurement noise, detection probability, state noise and clutter density, amongst which the first two have greater impact on the performance of the PCRLB than the others.展开更多
In Electronic Warfare (EW) receivers, the desired Dynamic Range (DR) often far exceeds the dynamic range attainable with available Analog-to-Digital Converter (ADC) technology. ADC is the key bottleneck in achie...In Electronic Warfare (EW) receivers, the desired Dynamic Range (DR) often far exceeds the dynamic range attainable with available Analog-to-Digital Converter (ADC) technology. ADC is the key bottleneck in achieving the needed dynamic range. In this paper, an approach for improving the effective DR by utiliTing multiple amplifiers is presented. The amplifiers, arranged in parallel channels with different gains, can increase the dynamic range greatly.展开更多
文摘Electronic warfare simulation can allow the realistic evaluation of the performance ofequipments and techniques, and it can also allow the realistic training of individualsunder conditions that, in real life, might kill them. We propose a new scheme of EWsimulation system based on SystemVue. This paper mainly expounds the structure ofsystem and the key technology of subsystem establishment. As a proof of concept, aradar electronic reconnaissance simulation experiment is explained in this paper. Andthe results verify the feasibility of the scheme.
基金Anhui Provincial Natural Science Foundation(Project for Youth:1908085QF252)Research Program of National University of Defense Technology(ZK19-10)。
文摘Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived.
基金supported by the National Natural Science Foundation of China(61302153)the Aeronautical Science Foundation of China(20160196001)
文摘Transmit waveform optimization is critical to radar system performance. There have been a fruit of achievements about waveform design in recent years. However, most of the existing methods are based on the assumption that radar is smart and the target is dumb, which is not always reasonable in the modern electronic warfare. This paper focuses on the waveform design for radar and the extended target in the environment of electronic warfare. Three different countermeasure models between smart radar and dumb target, smart target and dumb radar, smart radar and smart target are proposed. Taking the signal-to-interferenceplus-noise ratio(SINR) as the metric, optimized waveforms for the first two scenarios are achieved by the general water-filling method in the presence of clutter. For the last case, the equilibrium between smart radar and smart target in the presence of clutter is given mathematically and the optimized solution is achieved through a novel two-step water-filling method on the basis of minmax theory. Simulation results under different power constraints show the power allocation strategies of radar and target and the output SINRs are analyzed.
基金the National Center for Research and Development in Poland for grant No.DOB-1-6/1/PS/2014:“Laser Systems for Directed Energy Weapon,Laser Systems for Non-LethalWeapon”,which provided a proportion of the funds needed to conduct this research.
文摘The paper presents the possibilities of,and methods for,acquiring,analysing and processing optical signals in order to recognise,identify and counteract threats on the contemporary battleground.The main ways electronic warfare is waged in the optical band of the electromagnetic wave spectrum have been formulated,including the acquisition of optical emitter signatures,as well as ultraviolet(UV)and thermal(IR)signatures.The physical parameters and values describing the emission of laser radiation are discussed,including their importance in terms of creating optical signatures.Moreover,it has been shown that in the transformation of optical signals into signatures,only their spectral and temporal parameters can be applied.This was confirmed in experimental part of the paper,which includes our own measurements of spectral and temporal emission characteristics for three types of binocular laser rangefinders.It has been further shown that through simple registration and quick analysis involving comparison of emission time parameters in the case of UV signatures in“solar-blind”band,various events can be identified quickly and faultlessly.The same is true for IR signatures,where the amplitudes of the recorded signal for several wavelengths are compared.This was confirmed experimentally for UV signatures by registering and then analyzing signals from several events during military exercises at a training ground,namely Rocket Propelled Grenade(RPG)launches and explosions after hitting targets,trinitrotoluene(TNT)explosions,firing armour-piercing,fin-stabilised,discarding sabots(APFSDS)or high explosive(HE)projectiles.The final section describes a proposed model database of emitters,created as a result of analysing and transforming the recorded signals into optical signatures.
文摘To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.
基金supported by the National Natural Science Foundation of China (No.51375490)
文摘This paper studies the radar cross section (RCS) of carrier electronic warfare airplanes. Under the typical naval operations section, the mathematical model of the radar wave's pitch angle incidence range analysis is established. Based on the CATIA software, considering dynamic deflec- tions of duck wing leading edge flaps, flaperons, horizontal tail, and rudder, as well as aircraft with air-to-air missile, anti-radiation missile, electronic jamming pod, and other weapons, the 3D models of carrier electronic warfare airplanes Model A and Model B with weapons were established. Based on the physical optics method and the equivalent electromagnetic flow method, by the use of the RCSAnsys software, the characteristics of carrier electronic warfare airplanes' RCS under steady and dynamic flights were simulated under the UHF, X, and S radar bands. This paper researches the detection probability of aircraft by radars under the condition of electronic warfare, and com- pletes the mathematical statistical analysis of the simulation results. The results show that: The Model A of carrier electronic warfare airplane is better than Model B on stealth performance and on discover probability by radar detection effectively.
基金the National Natural Science Foundation of China(61801488,61921001,61601008).
文摘Tolerance sensitivity limits the practical application of the cross-eye jammer.Previous literature has demonstrated that retrodirective cross-eye jamming with multiple antenna elements possesses the advantage of loose tolerance requirements compared to traditional cross-eye jamming.However,the previous analysis was limited,because there are still some factors affecting the parameter tolerance of the multiple-element retrodirective cross-eye jamming(MRCJ)system and they have not been investigated completely,such as the loop difference,the baseline ratio and the jammer-to-signal ratio.This paper performs a comprehensive tolerance analysis of the MRCJ system with a nonuniformspacing linear array.Simulation results demonstrate the tolerance effects of the above influence factors and give reasonable advice for easing tolerance sensitivity.
基金supported by the Weapons and Equipment Research Foundation of China(304070102)
文摘The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
文摘Monopulse radar is widely used in military.Jamming monopulse radar has always been a research hotspot in electronic warfare(EW).Cross-eye jamming has always been considered as the most effective measures to jam with monopulse radar.In this paper, we propose a multi-group three-tuple crosseye jamming structure where each group contains three antenna elements with a definite phase and an amplitude relationship.Then, based on the principle of monopulse angle measurement, the error angle is deduced theoretically.Simulations show that such a multi-group three-tuple cross-eye jamming structure performs better than the multi-element cross-eye jamming structure previously proposed, and the analysis of the centroid shows that the centroid of the structure proposed in this paper is more widely distributed in space.
基金supported by the China Postdoctoral Science Foundation(2015M572694,2016T90979).
文摘To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above.
文摘In the state estimation of passive tracking systems, the traditional approximate expression for the Cramero-Rao lower bound (CRLB) does not take two factors into consideration, that is, measurement origin uncertainty aad state noise. Such treatment is only valid in ideal situation but it is not feasible in actual situation. In this article, considering the two factors, the posterior Cramer-Rao lower bound (PCRLB) recursion expression for the error of bearing-only tracking is derived. Then, further analysis is carried out on the PCRLB. According to the final result, there are four main parameters that play a role in the performance of the PCRLB, that is, measurement noise, detection probability, state noise and clutter density, amongst which the first two have greater impact on the performance of the PCRLB than the others.
文摘In Electronic Warfare (EW) receivers, the desired Dynamic Range (DR) often far exceeds the dynamic range attainable with available Analog-to-Digital Converter (ADC) technology. ADC is the key bottleneck in achieving the needed dynamic range. In this paper, an approach for improving the effective DR by utiliTing multiple amplifiers is presented. The amplifiers, arranged in parallel channels with different gains, can increase the dynamic range greatly.