Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme u...Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse. The diffraction fringes are clearly present in the laser dressed XUV photoelectron spectra, strongly resembling the Airy diffraction pattern of optical waves. This phenomenon suggests a great potential of attosecond diffractometry. According to this scheme we also propose a simple method to determine the XUV pulse duration from the photoelectron spectra with a rather high resolution.展开更多
We present photoelectron angular distribution of the aligned molecular ion H2^+ by intense ultrashort attosecond extreme ultraviolet laser pulses from numerical solutions of timedependent Schrodinger equations. Photo...We present photoelectron angular distribution of the aligned molecular ion H2^+ by intense ultrashort attosecond extreme ultraviolet laser pulses from numerical solutions of timedependent Schrodinger equations. Photoionization from a superposition state of the ground 1sσg and the excited 2pσu states with pulses at photon energies above the ionization potential, hω〉Ip, and intensity 10^14 W/cm^2, yields pulse duration dependent asymmetry of photoelectron angular distributions. We attribute the asymmetry to the periodical oscillation of the coherent electron wave packets, resulting from the interference of the two electronic states. For the processes with long pulse durations, such duration dependence is absent and symmetric angular distributions are obtained.展开更多
We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in...We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section(DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.展开更多
The motion of electron wave packets of a metal is examined classically in the presence of the magnetic field with the aim to calculate the time intervals between two states lying on the same Fermi surface. A lower lim...The motion of electron wave packets of a metal is examined classically in the presence of the magnetic field with the aim to calculate the time intervals between two states lying on the same Fermi surface. A lower limiting value of the transition time equal to about 10–18 sec is estimated as an average for the case when the states are lying on the Fermi surface having a spherical shape. Simultaneously, an upper limit for the electron circular frequency in a metal has been also derived. A formal reference of the classical transition time to the time interval entering the energy-time uncertainty relations known in quantum mechanics is obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.11005088)the Basic and Advanced Technology of Henan Province of China (Grant No.102300410241)the Scientific Research Foundation of Education Department of Henan Province of China (Grant Nos.2009A140006 and 20116140018)
文摘Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse. The diffraction fringes are clearly present in the laser dressed XUV photoelectron spectra, strongly resembling the Airy diffraction pattern of optical waves. This phenomenon suggests a great potential of attosecond diffractometry. According to this scheme we also propose a simple method to determine the XUV pulse duration from the photoelectron spectra with a rather high resolution.
基金This work was supported by the National Natural Science Foundation of China (No.21222308, No.21103187, and No.21133006), the Chinese Academy of Sciences, and the National Basic Research Program of China (No. 2013CB922200).
文摘We present photoelectron angular distribution of the aligned molecular ion H2^+ by intense ultrashort attosecond extreme ultraviolet laser pulses from numerical solutions of timedependent Schrodinger equations. Photoionization from a superposition state of the ground 1sσg and the excited 2pσu states with pulses at photon energies above the ionization potential, hω〉Ip, and intensity 10^14 W/cm^2, yields pulse duration dependent asymmetry of photoelectron angular distributions. We attribute the asymmetry to the periodical oscillation of the coherent electron wave packets, resulting from the interference of the two electronic states. For the processes with long pulse durations, such duration dependence is absent and symmetric angular distributions are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the STU Scientific Research Foundation for Talentsthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section(DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.
文摘The motion of electron wave packets of a metal is examined classically in the presence of the magnetic field with the aim to calculate the time intervals between two states lying on the same Fermi surface. A lower limiting value of the transition time equal to about 10–18 sec is estimated as an average for the case when the states are lying on the Fermi surface having a spherical shape. Simultaneously, an upper limit for the electron circular frequency in a metal has been also derived. A formal reference of the classical transition time to the time interval entering the energy-time uncertainty relations known in quantum mechanics is obtained.