期刊文献+
共找到2,075篇文章
< 1 2 104 >
每页显示 20 50 100
Experimental Study on Effects of Fuel Injection on Scramjet Combustor Performance 被引量:7
1
作者 Wu Xianyu Li Xiaoshan Ding Meng Liu Weidong Wang Zhenguo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第6期488-494,共7页
In order to investigate the effects of fuel injection distribution on the scrarnjet combustor performance, there are conducted three sets of test on a hydrocarbon fueled direct-connect scramjet test facility. The resu... In order to investigate the effects of fuel injection distribution on the scrarnjet combustor performance, there are conducted three sets of test on a hydrocarbon fueled direct-connect scramjet test facility. The results of Test A, whose fuel injection is carried out with injectors located on the top-wall and the bottom-wall, show that the fuel injection with an appropriate close-front and centralized distribution would be of much help to optimize combustor performances. The results of Test B, whose fuel injection is performed at the optimal injection locations found in Test A, with a given equivalence ratio and different injection proportions for each injector, show that this injection mode is of little benefit to improve combustor performances. The results of Test C with a circumferential fuel injection distribution displaies the possibility of ameliorating combustor performance. By analyzing the effects of injection location parameters on combustor performances on the base of the data of Test C, it is clear that the injector location has strong coupled influences on combustor performances. In addition, an irmer-force synthesis specific impulse is used to reduce the errors caused by the disturbance of fuel supply and working state of air heater while assessing combustor performances. 展开更多
关键词 SCRAMJET COMBUSTOR fuel injection direct-cormect test
下载PDF
Fuel Spray Dynamic Characteristics of GDI High Pressure Injection System 被引量:3
2
作者 LI Bo LI Yunqing WANG Defu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期355-361,共7页
In order to improve the fuel consumption and exhaust emission for gasoline engines,gasoline direct injection(GDI) system is spotlighted to solve these requirements.Thus,many researchers focus on the investigation of... In order to improve the fuel consumption and exhaust emission for gasoline engines,gasoline direct injection(GDI) system is spotlighted to solve these requirements.Thus,many researchers focus on the investigation of spray characteristics and the fuel formation of GDI injector.This paper presents a complete numerical and experimental characterization of transient gasoline spray from a high pressure injection system equipped with a modern single-hole electric controlled injector in a pressurized constant volume vessel.The numerical analysis is carried out in a one-dimensional model of fuel injection system which is developed in the AVL HYDSIM environment.The experimental analyses are implemented through a self-developed injection rate measurement device and spray evolution visualization system.The experimental results of injection rate and spray dynamics are taken to tune and validate the built model.The visualization system synchronize a high speed CMOS camera to obtain the spray structure,moreover,the captured images are taken to validate the injector needle lift process which is simulated in the model.The reliability of the built model is demonstrated by comparing the numerical results with the experimental data.The formed vortex structure at 0.8 ms is effectively disintegrated at 6.2 ms and the spray dynamics become rather chaotic.The fuel flow characteristics within injector nozzle extremely influence the subsequent spray evolution,and therefore this point should be reconsidered when building hybrid breakup GDI spray model.The spray tip speed reach the maximum at 1.18 ms regardless of the operation conditions and this is only determined by the injector itself.Furthermore,an empirical equation for the spray tip penetration is obtained and good agreement with the measured results is reached at a certain extent.This paper provides a methodology for the investigation of spray behavior and fuel distribution of GDI engine design. 展开更多
关键词 gasoline direct injection(GDI) fuel injection system spray dynamic
下载PDF
Injection Strategy in Natural Gas–Diesel Dual-Fuel Premixed Charge Compression Ignition Combustion under Low Load Conditions 被引量:3
3
作者 Hyunwook Park Euijoon Shim Choongsik Bae 《Engineering》 SCIE EI 2019年第3期548-557,共10页
Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxide... Dual-fuel premixed charge compression ignition (DF-PCCI) combustion has been proven to be a viable alternative to conventional diesel combustion in heavy-duty compression ignition engines due to its low nitrogen oxides (NOx) and particulate matter (PM) emissions. When natural gas (NG) is applied to a DF-PCCI engine, its low reactivity reduces the maximum pressure rise rate under high loads. However, the NG–diesel DF-PCCI engine suffers from low combustion efficiency under low loads. In this study, an injection strategy of fuel supply (NG and diesel) in a DF-PCCI engine was investigated in order to reduce both the fuel consumption and hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. A variation in the NG substitution and diesel start of energizing (SOE) was found to effectively control the formation of the fuel–air mixture. A double injection strategy of diesel was implemented to adjust the local reactivity of the mixture. Retardation of the diesel pilot SOE and a low fraction of the diesel pilot injection quantity were favorable for reducing the combustion loss. The introduction of exhaust gas recirculation (EGR) improved the fuel economy and reduced the NOx and PM emissions below Euro VI regulations by retarding the combustion phasing. The combination of an NG substitution of 40%, the double injection strategy of diesel, and a moderate EGR rate effectively improved the combustion efficiency and indicated efficiency, and reduced the HC and CO emissions under low load conditions. 展开更多
关键词 DUAL fuel REACTIVITY controlled compression IGNITION PREMIXED charge Natural gas injection strategy EXHAUST recirculation
下载PDF
Design of speed controller for electronic fuel injection gasoline generator based on feed-forward PID control
4
作者 赵自庆 刘昌文 张平 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期354-363,共10页
As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor ... As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard. 展开更多
关键词 gasoline generator digital speed controller electronic fuel injection (EFI) feed forward proportional-integral-differential (PID) control
下载PDF
Influence of Pre-injection Control Parameters on Main-injection Fuel Quantity for an Electronically Controlled Double-valve Fuel Injection System of Diesel Engine 被引量:3
5
作者 Enzhe Song Liyun Fan Chao Chen Quan Dong Xiuzhen Yun Bai 《Journal of Marine Science and Application》 2013年第3期366-373,共8页
A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with e... A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with experimental data.The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed.In the spill control valve mode,main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time.In the needle control valve mode,main-injection fuel quantity increases with rising multi-injection dwell time;this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths.Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes;the variation in main-injection quantity is in the range of 1 mm3. 展开更多
关键词 diesel engine double-valve fuel injection system pre-injection control parameters main-injection fuel quantity
下载PDF
STRUCTURE PARAMETERS DESIGN AND PERFORMANCE TEST OF FUEL INJECTION SYSTEM 被引量:4
6
作者 WU Changshui YU Jinxia YANG Lin ZHUO Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期407-411,共5页
Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self... Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound. 展开更多
关键词 High pressure common rail fuel injection system Structure parameters design Variance analysis
下载PDF
Measurement and analysis of cycle fuel injection quantity for electronic unit pump
7
作者 张长岭 黄印玉 +1 位作者 王沛 张峥 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期74-78,共5页
The cycle fuel injection quantity is accurately measured for electronic unit pump (EUP) operating at high, middle and low speeds by using displacement method based on EFS instantaneous mono-injector qualifier. On th... The cycle fuel injection quantity is accurately measured for electronic unit pump (EUP) operating at high, middle and low speeds by using displacement method based on EFS instantaneous mono-injector qualifier. On the basis of the experi- mental data about fuel injection quantity and fuel pressure, the variation of inconsistency in fuel injection quantity of EUP and the influence factors in different operating conditions are concluded. The results show that the inconsistency is lowest in maximum torque condition, while on the start and maximum power conditions, it is higher. 展开更多
关键词 diesel engine fuel injection quantity electronic unit pump (EUP)
下载PDF
Research on High Pressure Gas Injection As a Method of Fueling, Disruption Mitigation and Plasma Termination for Future Tokamak Reactors
8
作者 宋云涛 S.Nishio 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第5期3057-3061,共5页
High-pressure gas injection has proved to be an effective disruption mitigation tech- nique in DIII-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but... High-pressure gas injection has proved to be an effective disruption mitigation tech- nique in DIII-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but also for plasma termination and fueling, it will have an attractive advantage over the pellet and liquid injection from the viewpoint of economy and engineering design. In order to investigate the feasibility of this option, a study has been carried out with relevant parameters for conveying tubes of different geometrical sizes and for different gases. These parameters include pressure drop, lagger time after the valve's opening, gas diffusion in an ultra-high vacuum condition, and particle number contour. 展开更多
关键词 tokamak reactor disruption mitigation fuelING gas injection
下载PDF
Elimination of Fuel Pressure Fluctuation and Multi-injection Fuel Mass Deviation of High Pressure Common-rail Fuel Injection System 被引量:8
9
作者 LI Pimao ZHANG Youtong +1 位作者 LI Tieshuan XIE Lizhe 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期294-306,共13页
The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type... The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection. 展开更多
关键词 high pressure common-rail system pressure fluctuation multi-injection fuel mass deviation hydraulic filter
下载PDF
An experimental study on RP-3 jet fuel injection on a common rail injection system
10
作者 ZHAO Tong-bin WU Yi-sheng +2 位作者 DUAN Yao-zong HUANG Zhen HAN Dong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2179-2188,共10页
RP-3 jet fuel could be an alternative fuel for diesel engines.In this study,the injection characteristics of RP-3jet fuel under single and split injection strategies were investigated and compared with diesel fuel.The... RP-3 jet fuel could be an alternative fuel for diesel engines.In this study,the injection characteristics of RP-3jet fuel under single and split injection strategies were investigated and compared with diesel fuel.The experimental results indicate that RP-3 jet fuel has slightly shorter injection delay time than diesel fuel,but this difference is negligible in actual engine operations.Further,although the lower density and viscosity of RP-3 jet fuel lead to higher volumetric injection rates and cycle-based injection quantities,the cycle-based injection mass and the mass injection rates at the stable injection stage of RP-3 jet fuel are close to or slightly lower than those of diesel fuel.Based on these experimental observations,it could be concluded that fuel physical properties are the secondary factor influencing the injection characteristics in both single and split injection strategies,as RP-3 jet fuel and diesel fuel are taken for comparison. 展开更多
关键词 RP-3 jet fuel diesel engine single injection pilot-main injection common rail injection system
下载PDF
Mathematical Model for the Injector of a Common Rail Fuel-Injection System 被引量:1
11
作者 Simon Marcic1] Milan Marcic Zdravko Praunseis 《Engineering(科研)》 2015年第6期307-321,共15页
The paper describes a Diesel fuel injection process. Computer simulation was carried out together with measurement of the Common Rail accumulator fuel-injection system. The computer simulation enables the observation ... The paper describes a Diesel fuel injection process. Computer simulation was carried out together with measurement of the Common Rail accumulator fuel-injection system. The computer simulation enables the observation of the phenomena from rail pressure, being the input data for injection parameters calculations, to the injection rate. By means of computer simulation, the pressure values in specific sections of the injection nozzle may be computed, the needle lift, injection rate, total injected fuel, time lag from injector current to first evidence of injection process and other time-lags between various phases of the injection process. The injection rate provides input data for spray computer simulation. Measurements of injection and combustion were carried out within a transparent research engine. This engine is a single-cylinder transparent engine based on the AUDI V6 engine, equipped with a Bosch Common Rail Injection System. The comparison between the computed and measured injection parameters showed good matching. 展开更多
关键词 Diesel Engine fuel injection System
下载PDF
Investigation of Performance and Combustion Characteristics of DI Diesel Engine Fuelled with Ternary Fuel Blend at Different Injection Pressure
12
作者 Pani Sharanappa Mallinath C. Navindgi 《World Journal of Engineering and Technology》 2017年第1期125-138,共14页
The depletion of fossil diesel fuels, global warming concerns and strict limits on regulated pollutant emissions are encouraging the use of renewable fuels. Biodiesel is the most used renewable fuel in compression ign... The depletion of fossil diesel fuels, global warming concerns and strict limits on regulated pollutant emissions are encouraging the use of renewable fuels. Biodiesel is the most used renewable fuel in compression ignition (CI) engine. The majority of literature agrees that the particulate matter (PM), unburnt total hydrocarbons (THC) and carbon dioxide (CO) emission from biodiesel are lower than from conventional diesel fuel. One of the most important reasons for this is the oxygen content of the biodiesel. This induces a more complete and cleaner combustion process. In addition to this the absence of aromatic compounds in biodiesel leads to particulate matter reduction with respect to diesel fuel. The potential emission benefits induced by the presence of oxygen in fuel molecules has increased the interest in using the bio-alcohols fuel blends in CI engines such as ethanol. Although alcohols are more suitable for blending with diesel fuel, properties like lubricity, viscosity, stability, heating value and cetane number of diesel-alcohol (Diesohol) still require improvement. One of the techniques is addition of biodiesel which can improve all of these properties forming diesel-biodiesel-alcohol (ternary) blends. The blends of diesel-biodiesel-ethanol can be used in the existing CI engines without any major modifications and most significant result of using this blend is the lower emission with almost the same performance as of diesel fuel alone. The present study focused on investigation of performance and combustion characteristics of ternary fuel blend in DI diesel engine operating at different injection opening pressure (IOP). The different injection opening pressures are: 180 bar, 200 bar and 220 bar. 展开更多
关键词 DIESOHOL TERNARY fuel Blends AROMATIC Compounds injection OPENING Pressure CI Engines
下载PDF
Extracting the core indicators of pulverized coal for blast furnace injection based on principal component analysis 被引量:4
13
作者 Hong-wei Guo Bu-xin Su +2 位作者 Jian-liang Zhang Meng-yi Zhu Jian Chang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第3期246-252,共7页
An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indica... An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indicator system of pulverized coal used in blast furnaces. This presented method takes into account all the performance indicators of pulverized coal injection, including calorific value, igniting point, combustibility, reactivity, flowability, grindability, etc. Four core indicators of pulverized coal injection are selected and studied by using principal component analysis, namely, comprehensive combustibility, comprehensive reactivity, comprehensive flowability, and comprehensive grindability. The newly established core index system is not only beneficial to narrowing down current evaluation indices but also effective to avoid previous overlapping problems among indicators by mutually independent index design. Furthermore, a comprehensive property indicator is introduced on the basis of the four core indicators, and the injection properties of pulverized coal can be overall evaluated. 展开更多
关键词 blast furnaces pulverized coal fuel injection principal component analysis INDICATORS
下载PDF
Development of a compact torus injection system for the Keda Torus eXperiment 被引量:3
14
作者 Chen CHEN Tao LAN +19 位作者 Chijin XIAO Ge ZHUANG Defeng KONG Shoubiao ZHANG Sen ZHANG Weixing DING Zhengwei WU Wenzhe MAO Jie WU Hangqi XU Jiaren WU Yiming ZU Dong ZHANG Zian WEI Xiaohui WEN Chu ZHOU Ahdi LIU Jinlin XIE Hong LI Wandong LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第4期114-123,共10页
A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues ass... A compact torus injection system,KTX-CTI,has been developed for the planned injection experiments on the Keda Torus e Xperiment(KTX)reversed field pinch(RFP)device to investigate the physics and engineering issues associated with interaction between a compact torus(CT)and RFP.The key interests include fueling directly into the reactor center,confinement improvement,and the injection of momentum and helicity into the RFP discharges.The CT velocity and mass have been measured using a multichannel optical fiber interferometer,and for the first time the time evolution of the CT density profile during CT propagation is obtained.The effects of discharge parameters on the number of injected particles,CT velocity and CT density have been characterized:the maximum hydrogen CT plasma mass,m,CTis 50μg,corresponding to 30%of the mass in a typical KTX plasma;the CT velocity exceeds 120 km s-1.It is observed for the first time that multiple CTs can be produced and emitted during a very short period(<100μs)in one discharge,which is significant for the future study of repetitive CT injection,even with an ultra-high frequency. 展开更多
关键词 compact torus injection central fueling reversed field pinch
下载PDF
Interaction of Impurity (Li, Be, B and C) and Hydrogen Isotope Pellet Injection with Reactor-relevant Plasmas 被引量:1
15
作者 邓柏权 J.P.Allain +3 位作者 彭利林 王晓宇 陈志 严建成 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第1期2615-2622,共8页
Based on the two-dimensional kinetic ablation theory of the hydrogen pellet ablation developed by Kuteev [B.V. Kuteev, Nuclear Fusion, 35 (1995) 431], an algorithm of erosion speed and ablation rate calculations for L... Based on the two-dimensional kinetic ablation theory of the hydrogen pellet ablation developed by Kuteev [B.V. Kuteev, Nuclear Fusion, 35 (1995) 431], an algorithm of erosion speed and ablation rate calculations for Li, Be, and B impurity pellets in reactor-relevant plasma has been derived. Results show compatibilities of lithium pellet injection used in α-particle diagnostics are positive in comparison with other solid impurity pellets (e.g. Be, B and C). Using the 2-D Kuteev lentil model, including kinetic effects, we find that currently existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressure as high as 254 MPa must be applied to a pellet accelerator with a 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet with a radius rpo = 0.5 cm to a velocity of vpo, 24 × 105 cm/s penetrating 100 cm into the ITER plasma core. Comparisons of pellet velocity- and radius-dependent penetration depth between the Neutral Gas Shielding and the Kuteev's models are made. However, we find that the isotopic effects can lead to a 33% lower pellet speed for solid DT, compared to an identical H2 pellet penetrating the same length in ITER-FEAT plasma, and our calculations show that HFS injection will much improve core fueling efficiency. 展开更多
关键词 ITER-FEAT pellet ablation core fueling isotopic effects HFS injection
下载PDF
Reduction behavior and kinetics of vanadium–titanium sinters under high potential oxygen enriched pulverized coal injection 被引量:1
16
作者 Jin-fang Ma Guang-wei Wang +4 位作者 Jian-liang Zhang Xin-yu Li Zheng-jian Liu Ke-xin Jiao Jian Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期493-503,共11页
In this work, the reduction behavior of vanadium–titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was establishe... In this work, the reduction behavior of vanadium–titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was established to analyze the reduction kinetics. The results show that the reduction rate of sinters was accelerated by an increase of CO and H2contents. Meanwhile, with the increase in CO and H2contents, the increasing range of the medium reduction index (MRE) of sinters decreased. The increasing oxygen enrichment ratio played a diminishing role in improving the reduction behavior of the sinters. The reducing process kinetic parameters were solved using the modified random role model. The results indicated that, with increasing oxygen enrichment, the contents of CO and H2in the reducing gas increased. The reduction activation energy of the sinters decreased to between 20.4 and 23.2 kJ/mol. © 2017, The Author(s). 展开更多
关键词 Activation energy COAL injection (oil wells) Kinetic parameters KINETICS OXYGEN Pulverized fuel SINTERING TITANIUM VANADIUM
下载PDF
Development of the pellet injection system on the J-TEXT tokamak
17
作者 Yingzhou JIANG Zhongyong CHEN +11 位作者 You LI Wei YAN A LUKIN I VINYAR Feng LI Xin XU Zhipeng CHEN Zhoujun YANG Nengchao WANG Yonghua DING Yuan PAN the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第9期127-133,共7页
Pellet injection is an attractive technology for core-fueling and magnetohydrodynamic study in magnetic-conflnement fusion devices like tokamaks and stellarators.It can inject solid hydrogen/deuterium pellets into the... Pellet injection is an attractive technology for core-fueling and magnetohydrodynamic study in magnetic-conflnement fusion devices like tokamaks and stellarators.It can inject solid hydrogen/deuterium pellets into the plasma with deeper density deposition compared with other fueling methods,such as gas pufflng.A three-barrel H_(2)pellet injection system was installed on the J-TEXT tokamak and experiments were carried out.The pellets are formed in three barrels cooled by a cryocooler and compressor system at around 9 K,and are 0.8 mm/1 mm diameter and 0.8 mm length.The pellet is launched by helium propellant gas and injected from the lowfleld side of the plasma.The normal range of pellet speed is 210–310 m s^(-1)for different propellant gas pressures.Due to the three-barrel structure,the number of injected pellets can be adjusted between one and three.Pellets can be launched sequentially with arbitrary time intervals,which enables flexible applications.The results of the experiments show that pellet fueling efflciency can reach 50%.The energy conflnement time increased by about 7.5–10 ms after pellet injection. 展开更多
关键词 J-TEXT pellet injection system pellet fueling
下载PDF
The Characteristic Analysis of the Electromagnetic Valve in Opening and Closing Process for the Gas Injection System
18
作者 Linqian Yin Changshui Wu 《Journal of Electromagnetic Analysis and Applications》 2016年第8期152-159,共9页
In this paper, the mathematical model of solenoid valve in the fuel injection system of gas engine is built. Simulation software Matlab/Simulink are employed to analyze the impact which the voltage, number of the coil... In this paper, the mathematical model of solenoid valve in the fuel injection system of gas engine is built. Simulation software Matlab/Simulink are employed to analyze the impact which the voltage, number of the coil turns and air gap width may produce to the open and close characteristics of the solenoid valve. The ideal response characteristics are got through the calculation. An optimal scheme which satisfies the operation requirements is put forward. The driving voltage and maintaining voltage are set as 90 V and 21 V;number of the coil turns is 30 N;air gap is determined as 0.6 mm;the opening and closing time are respectively 0.98 ms and 0.8 ms. This paper can be used as a reference for the design of the solenoid valve. 展开更多
关键词 Solenoid Valve Response Characteristics MATLAB/SIMULINK fuel injection System
下载PDF
大缸径柴油机燃烧系统优化模拟 被引量:1
19
作者 李成 田华 +2 位作者 黄永仲 隆武强 陈秉智 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期25-31,共7页
为提高某缸径200 mm船用发电柴油机的燃油经济性,本文设计了活塞燃烧室和燃油喷射系统的升级方案并进行了模拟优化。升级方案提高了压缩比和燃油喷射压力,采用大径深比浅ω燃烧室配合158°喷油夹角喷油嘴。对不同方案下发动机的缸... 为提高某缸径200 mm船用发电柴油机的燃油经济性,本文设计了活塞燃烧室和燃油喷射系统的升级方案并进行了模拟优化。升级方案提高了压缩比和燃油喷射压力,采用大径深比浅ω燃烧室配合158°喷油夹角喷油嘴。对不同方案下发动机的缸内工作过程进行了计算流体力学模拟,计算了高压指示功和放热率相位,分析了缸内温度、反应过量空气系数和速度分布及演化。模拟结果表明:升级方案能够提高发动机热效率。增加喷孔数并减小孔径,可以在保持NOx排放基本不变的条件下提高高压指示功4.5%,降低碳烟排放约60%。采用“平顶”浅ω燃烧室与158°喷油夹角喷雾配合,油气混合气快速进入余隙并形成逆时针的漩涡流动,能够加速油气混合和燃烧过程,提高热效率。 展开更多
关键词 柴油机 燃油经济性 燃烧室 燃油喷射 模拟 优化 热效率 氮氧化物 碳烟
下载PDF
喷油压力和进气温度对氨/正十二烷双燃料发动机燃烧稳定性影响研究 被引量:1
20
作者 刘海峰 王冠月 +3 位作者 文铭升 明镇洋 崔雁清 尧命发 《燃烧科学与技术》 CAS CSCD 北大核心 2024年第1期1-8,共8页
基于一台光学发动机,在1200 r/min转速下,采用进气道低压喷射氨气,缸内高压直喷高活性正十二烷的双燃料燃烧模式,应用火焰高速成像方法,研究了喷油压力和进气温度对氨/正十二烷双燃料发动机缸内燃烧的影响规律.结果表明,直喷燃料喷射压... 基于一台光学发动机,在1200 r/min转速下,采用进气道低压喷射氨气,缸内高压直喷高活性正十二烷的双燃料燃烧模式,应用火焰高速成像方法,研究了喷油压力和进气温度对氨/正十二烷双燃料发动机缸内燃烧的影响规律.结果表明,直喷燃料喷射压力降低,导致正十二烷浓度分层增大,自燃着火点增多,更有利于正十二烷引燃均质预混合的氨气;直喷压力在30 MPa和60 MPa工况下,火焰初期NH3燃烧的橘色火焰占主导,之后呈现正十二烷预混蓝色火焰与NH3橘色火焰叠加现象;在90 MPa喷射压力下,火焰发展初期正十二烷预混蓝色火焰占主导,随着燃烧发展NH3橘色火焰的比例逐渐增多.在30 MPa喷射压力下,缸内直喷正十二烷可以实现90%氨气比例的稳定着火,但是燃烧反应速率过低,燃烧持续期过长.进气温度从100℃升高到125℃后,自燃着火点数量增加,氨双燃料燃烧反应速率提高,放热率峰值增大;然而进气温度进一步从125℃提高到150℃时,对燃烧压力和放热率影响很小.上述研究表明,较低的直喷燃料喷射压力和适当提高进气温度更有利于氨燃料的稳定着火以及燃烧速率的提升和氨在双燃料中占比的提高. 展开更多
关键词 双燃料发动机 氨气 正十二烷 喷射压力 光学诊断
下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部