Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Imp...Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated.展开更多
The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain f...The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear.This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation.We conducted succinylome analysis of hippocampal proteins in germ-free(GF)and specific pathogen-free(SPF)mice and metagenomic analysis of feces from SPF mice.These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice.Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins,including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice.We constructed a panoramic map of gut microbiota-regulated succinylation,acetylation,and phosphorylation,and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways.Pearson correlation analysis indicated that 13 taxa,predominantly belonging to the Bacteroidetes phylum,were correlated with the biological functions of post-translational modifications.Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways.This study highlights the hippocampal physiological changes induced by the absence of gut microbiota,and proteomic quantification of succinylation,phosphorylation,and acetylation,contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.展开更多
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi...Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.展开更多
Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsat...Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsatisfactory(0.224%-1.082%(mass))compared to its modified counterpart.Thus,the contemporary focus on enhancing hydrogen storage capacities has led to significant attention towards the utilization of modified zeolites,with studies exploring surface modifications through physical and chemical treatments,as well as the integration of various active metals.The enhanced hydrogen storage properties of zeolites are attributed to the presence of aluminosilicates from alkaline and alkaline-earth metals,resulting in increased storage capacity through interactions with the charge density of these aluminosilicates.Therefore,there is a great demand to critically review their role such as well-defined topology,pore structure,good thermal stability,and tunable hydrophilicity in enhanced hydrogen storage.This article aimed to critically review the recent research findings based on modified zeolite performance for enhanced hydrogen storage.Some of the factors affecting the hydrogen storage capacities of zeolites that can affect the rate of reaction and the stability of the adsorbent,like pressure,structure,and morphology were studied,and examined.Then,future perspectives,recommendations,and directions for modified zeolites were discussed.展开更多
As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this r...As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.展开更多
Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi...Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.展开更多
The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarizatio...The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc.展开更多
Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredg...Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredged sediment(CDS)with high water content is still unknown.In this study,guar gum(GG)and xanthan gum(XG)were adopted as typical biopolymers,and a series of unconfined compressive strength(UCS),splitting tensile strength(STS)and scanning electron microscopy(SEM)tests were performed to evaluate the mechanical and microstructural properties of XG-and GG-modified CDSs considering several factors including biopolymer modification,binderesoil ratio and wateresolid ratio.Furthermore,the micro-mechanisms revealing the evolutions of mechanical properties of biopolymermodified CDS were analyzed.The results indicate that the addition of XG can effectively improve the strength of CDS,while the GG has a side effect.The XG content of 9%was recommended,which can improve the 7 d-and 28 d-UCSs by 196%and 51.8%,together with the 7 d-and 28 d-STSs by 118.3%and 42.2%,respectively.Increasing the binderesoil ratio or decreasing the wateresolid ratio significantly improved the strength gaining but aggravated the brittleness characteristics of CDS.Adding XG to CDS contributed to the formation of microstructure with more compactness and higher cementation degrees of ordinary Portland cement(OPC)-XG-stabilized DS(CXDS).The micro-mechanism models revealing the interactions of multiple media including OPC cementation,biopolymer film bonding and bridging effects inside CXDS were proposed.The key findings confirm the feasibility of XG modification as a green and high-efficiency mean for improving the mechanical properties of CDS.展开更多
The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)...The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength...The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution.展开更多
We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-mo...We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites.展开更多
Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and...Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins.展开更多
Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remai...Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remains high.Therefore,exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches.This study aims to explore the involvement of N6-methyladenosine(m^(6)A)methylation in long non-coding RNAs(lncRNAs)in the biological functions and related pathways of middle ear cholesteatoma.Methods:The m^(6)A modification patterns of lncRNA in middle ear cholesteatoma tissues(n=5)and normal post-auricular skin tissues(n=5)were analyzed using an lncRNA m^(6)A transcriptome microarray.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma.Methylated RNA immunoprecipitation(MeRIP)-PCR was used to validate the m^(6)A modifications in cholesteatoma and normal skin tissues.Results:Compared with normal skin tissues,1525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues,with 1048 showing hypermethylation and 477 showing hypomethylation[fold change(FC)≥3 or<1/3,P<0.05].GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity,neuron-neuron synapse,and regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)receptor activity.Hypomethylated lncRNAs were associated with mRNA methyltransferase activity,secretory granule membrane,and mRNA methylation.KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways:the Hedgehog signaling pathway,viral protein interaction with cytokines and cytokine receptors,mitogen-activated protein kinase(MAPK)signaling pathway,cytokine-cytokine receptor interaction,and adrenergic signaling in cardiomyocytes.Hypomethylated lncRNAs were mainly involved in 4 pathways:Renal cell carcinoma,tumor necrosis factor signaling pathway,transcriptional misregulation in cancer,and cytokine-cytokine receptor interaction.Additionally,MeRIP-PCR confirmed the changes in m^(6)A methylation levels in NR_033339,NR_122111,NR_130744,and NR_026800,consistent with microarray analysis.Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB,key genes in the MAPK signaling pathway.Conclusion:This study reveals the m^(6)A modification patterns of lncRNAs in middle ear cholesteatoma,suggests a direction for further research into the role of lncRNA m^(6)A modification in the etiology of cholesteatoma.The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma.展开更多
Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and par...Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and paracrine abilities give hope for neuroprotection.Recent studies on SC modification have enhanced therapeutic effects for IS,including gene transfection,nanoparticle modification,biomaterial modification and pretreatment.Thesemethods improve survival rate,homing,neural differentiation,and paracrine abilities in ischemic areas.However,many problems must be resolved before SC therapy can be clinically applied.These issues include production quality and quantity,stability during transportation and storage,as well as usage regulations.Herein,we reviewed the brief pathogenesis of IS,the“multi-mechanism”advantages of SCs for treating IS,various SC modification methods,and SC therapy challenges.We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.展开更多
N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modi...N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.展开更多
Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making t...Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory.展开更多
This work investigates the flow and agglomeration behaviors of battery grade Li_(2)CO_(3)powder and the influence of stearic acid surface modification.The degree of agglomeration is directly related to the uniformity ...This work investigates the flow and agglomeration behaviors of battery grade Li_(2)CO_(3)powder and the influence of stearic acid surface modification.The degree of agglomeration is directly related to the uniformity of Li_(2)CO_(3)and its powder mixtures.According to the Chinese National Nonferrous Metal Industry Standard,battery grade Li_(2)CO_(3)powder has D50 equal to 3–8μm which belongs to a micron-sized superfine powder.Therefore,with the extension of storage time,the serious agglomeration phenomenon occurs due to the large specific surface area and rough and irregular powder particles.The Hausner ratio(HR)of the unmodified sample increases from 1.14 to 1.41,and the corresponding flowability is classified as good to poor.Instead,among samples with doping stearic acid,the optimum amount of it is 0.10 wt%which exhibits an extremely stable HR value from 1.14 to 1.16.Meanwhile,after 156 days,the repose angle(AR)obtained for samples without surface modification and using 0.10 wt%stearic acid are calculated to be 49°and 28°,respectively.Based on the values of HR and AR,the flowability of the unmodified sample is poor while the sample modified with 0.10 wt%of stearic acid still maintain excellent powder flow property.Moreover,The LiMn_(2)O_(4)cathode material synthesized from modified Li_(2)CO_(3)powder with a stearic acid content of 0.10 wt%exhibits good crystallinity and comparable electrochemical performance to that prepared by commercial Li_(2)CO_(3).These results indicate that stearic acid has the potential to be an ideal modifier for battery grade Li_(2)CO_(3)powder that needs to be kept for a long time.展开更多
Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-met...Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-methyladenosine(m^(6)A) modifications are the most common form of epigenetic regulation at the RNA level and play an essential role in biological processes. However, whether m^(6)A modifications participate in corticospinal tract regeneration after spinal cord injury remains unknown. We found that expression of methyltransferase 14 protein(METTL14) in the locomotor cortex was high after spinal cord injury and accompanied by elevated m^(6)A levels. Knockdown of Mettl14 in the locomotor cortex was not favorable for corticospinal tract regeneration and neurological recovery after spinal cord injury. Through bioinformatics analysis and methylated RNA immunoprecipitation-quantitative polymerase chain reaction, we found that METTL14 regulated Trib2 expression in an m^(6)A-regulated manner, thereby activating the mitogen-activated protein kinase pathway and promoting corticospinal tract regeneration. Finally, we administered syringin, a stabilizer of METTL14, using molecular docking. Results confirmed that syringin can promote corticospinal tract regeneration and facilitate neurological recovery by stabilizing METTL14. Findings from this study reveal that m^(6)A modification is involved in the regulation of corticospinal tract regeneration after spinal cord injury.展开更多
We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The ...We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.展开更多
基金supported by the National Natural Science Foundation of China,No.82071283(to QH)the Natural Science Foundation of Shanghai,No.22ZR1437700(to QH)。
文摘Stroke is a leading cause of mortality and disability worldwide.Ischemic cell death triggered by the compromised supply of blood oxygen and glucose is one of the major pathophysiology of strokeinduced brain injury.Impaired mitochondrial energy metabolism is observed minutes after stroke and is closely associated with the progression of neuropathology.Recently,a new type of posttranslational modification,known as lysine succinylation,has been recognized to play a significant role in mitochondrial energy metabolism after ischemia.However,the role of succinylation modification in cell metabolism after stroke and its regulation are not well understood.We aimed to review the effects of succinylation on energy metabolism,reactive oxygen species generation,and neuroinflammation,as well as Sirtuin 5 mediated desuccinylation after stroke.We also highlight the potential of targeting succinylation/desuccinylation as a promising strategy for the treatment of stroke.The succinylation level is dynamically regulated by the nonenzymatic or enzymatic transfer of a succinyl group to a protein on lysine residues and the removal of succinyl catalyzed by desuccinylases.Mounting evidence has suggested that succinylation can regulate the metabolic pathway through modulating the activity or stability of metabolic enzymes.Sirtuins,especially Sirtuin 5,are characterized for their desuccinylation activity and have been recognized as a critical regulator of metabolism through desuccinylating numerous metabolic enzymes.Imbalance between succinylation and desuccinylation has been implicated in the pathophysiology of stroke.Pharmacological agents that enhance the activity of Sirtuin 5 have been employed to promote desuccinylation and improve mitochondrial metabolism,and neuroprotective effects of these agents have been observed in experimental stroke studies.However,their therapeutic efficacy in stroke patients should be validated.
基金supported by the Natural Science Foundation Project of China(81820108015,82201683)China Postdoctoral Science Foundation(2021M693926,2020TQ0393,2020M683634XB)+1 种基金Chongqing Science&Technology Commission(cstc2021jcyj-bshX0150,cstc2021jcyj-bshX0201)Special Funding for Chongqing Postdoctoral Research Projects(2021XMT001)。
文摘The gut microbiome interacts with the host to maintain body homeostasis,with gut microbial dysbiosis implicated in many diseases.However,the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear.This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation.We conducted succinylome analysis of hippocampal proteins in germ-free(GF)and specific pathogen-free(SPF)mice and metagenomic analysis of feces from SPF mice.These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice.Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins,including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice.We constructed a panoramic map of gut microbiota-regulated succinylation,acetylation,and phosphorylation,and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways.Pearson correlation analysis indicated that 13 taxa,predominantly belonging to the Bacteroidetes phylum,were correlated with the biological functions of post-translational modifications.Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways.This study highlights the hippocampal physiological changes induced by the absence of gut microbiota,and proteomic quantification of succinylation,phosphorylation,and acetylation,contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.
基金the financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technologythe Supported by the Fundamental Research Funds for the Central Universities。
文摘Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.
基金supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme(FRGS)No.FRGS/1/2021/TK0/UMP/02/37(University Ref.RDU210135).
文摘Investigating zeolites as hydrogen storage scaffolds is imperative due to their porous nature and favorable physicochemical properties.Nevertheless,the storage capacity of the unmodified zeolites has been rather unsatisfactory(0.224%-1.082%(mass))compared to its modified counterpart.Thus,the contemporary focus on enhancing hydrogen storage capacities has led to significant attention towards the utilization of modified zeolites,with studies exploring surface modifications through physical and chemical treatments,as well as the integration of various active metals.The enhanced hydrogen storage properties of zeolites are attributed to the presence of aluminosilicates from alkaline and alkaline-earth metals,resulting in increased storage capacity through interactions with the charge density of these aluminosilicates.Therefore,there is a great demand to critically review their role such as well-defined topology,pore structure,good thermal stability,and tunable hydrophilicity in enhanced hydrogen storage.This article aimed to critically review the recent research findings based on modified zeolite performance for enhanced hydrogen storage.Some of the factors affecting the hydrogen storage capacities of zeolites that can affect the rate of reaction and the stability of the adsorbent,like pressure,structure,and morphology were studied,and examined.Then,future perspectives,recommendations,and directions for modified zeolites were discussed.
基金financial support from the National Natural Science Foundation of China(21676036)the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing(CYS-20040)。
文摘As a new generation electrode materials for energy storage,perovskites have attracted wide attention because of their unique crystal structure,reversible active sites,rich oxygen vacancies,and good stability.In this review,the design and engineering progress of perovskite materials for supercapacitors(SCs)in recent years is summarized.Specifically,the review will focus on four types of perovskites,perovskite oxides,halide perovskites,fluoride perovskites,and multi-perovskites,within the context of their intrinsic structure and corresponding electrochemical performance.A series of experimental variables,such as synthesis,crystal structure,and electrochemical reaction mechanism,will be carefully analyzed by combining various advanced characterization techniques and theoretical calculations.The applications of these materials as electrodes are then featured for various SCs.Finally,we look forward to the prospects and challenges of perovskite-type SCs electrodes,as well as the future research direction.
基金the Australian Research Council(ARC)through the discovery grant DP210101862。
文摘Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3608601).
文摘The ohmic contact interface between diamond and metal is essential for the application of diamond detectors.Surface modification can significantly affect the contact performance and eliminate the interface polarization effect.However,the radiation stability of a diamond detector is also sensitive to surface modification.In this work,the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated.Before radiation,the specific contact resistivities(ρc)between Ti/Pt/Au-hydrogen-terminated diamond(H-diamond)and Ti/Pt/Au-oxygenterminated diamond(O-diamond)were 2.0×10^(-4)W·cm^(2) and 4.3×10^(-3)Wcm^(2),respectively.After 10 MeV electron radiation,the ρc of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were 5.3×10^(-3)W·cm^(2)and 9.1×10^(-3)W·cm^(2),respectively.The rates of change of ρc of H-diamond and O-diamond after radiation were 2550%and 112%,respectively.The electron radiation promotes bond reconstruction of the diamond surface,resulting in an increase in ρc.
基金supported by the National Key R&D Program of China(Grant No.2020YFC1908703)Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51861165104)China Postdoctoral Science Foundation(Grant No.2022M723347).
文摘Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredged sediment(CDS)with high water content is still unknown.In this study,guar gum(GG)and xanthan gum(XG)were adopted as typical biopolymers,and a series of unconfined compressive strength(UCS),splitting tensile strength(STS)and scanning electron microscopy(SEM)tests were performed to evaluate the mechanical and microstructural properties of XG-and GG-modified CDSs considering several factors including biopolymer modification,binderesoil ratio and wateresolid ratio.Furthermore,the micro-mechanisms revealing the evolutions of mechanical properties of biopolymermodified CDS were analyzed.The results indicate that the addition of XG can effectively improve the strength of CDS,while the GG has a side effect.The XG content of 9%was recommended,which can improve the 7 d-and 28 d-UCSs by 196%and 51.8%,together with the 7 d-and 28 d-STSs by 118.3%and 42.2%,respectively.Increasing the binderesoil ratio or decreasing the wateresolid ratio significantly improved the strength gaining but aggravated the brittleness characteristics of CDS.Adding XG to CDS contributed to the formation of microstructure with more compactness and higher cementation degrees of ordinary Portland cement(OPC)-XG-stabilized DS(CXDS).The micro-mechanism models revealing the interactions of multiple media including OPC cementation,biopolymer film bonding and bridging effects inside CXDS were proposed.The key findings confirm the feasibility of XG modification as a green and high-efficiency mean for improving the mechanical properties of CDS.
基金financial support from National Natural Science Foundation of China(No.21875106,21850410456,21875052,51972172)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000)Jiangsu Excellent Postdoctoral Program
文摘The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.
基金Funded by the National Natural Science Foundation of China(No.52078050)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JZ-22)。
文摘The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution.
基金Funded by Changsha Natural Science Foundation(No.kq2208270)。
文摘We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites.
文摘Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins.
基金supported by the National Natural Science Foundation(82071036,82000973)the Natural Science Foundation of Hunan Province(2022JJ30821,2019JJ50967)the Special Project for the Construction of Innovative Provinces in Hunan Province(2023SK4030),China。
文摘Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remains high.Therefore,exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches.This study aims to explore the involvement of N6-methyladenosine(m^(6)A)methylation in long non-coding RNAs(lncRNAs)in the biological functions and related pathways of middle ear cholesteatoma.Methods:The m^(6)A modification patterns of lncRNA in middle ear cholesteatoma tissues(n=5)and normal post-auricular skin tissues(n=5)were analyzed using an lncRNA m^(6)A transcriptome microarray.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma.Methylated RNA immunoprecipitation(MeRIP)-PCR was used to validate the m^(6)A modifications in cholesteatoma and normal skin tissues.Results:Compared with normal skin tissues,1525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues,with 1048 showing hypermethylation and 477 showing hypomethylation[fold change(FC)≥3 or<1/3,P<0.05].GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity,neuron-neuron synapse,and regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)receptor activity.Hypomethylated lncRNAs were associated with mRNA methyltransferase activity,secretory granule membrane,and mRNA methylation.KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways:the Hedgehog signaling pathway,viral protein interaction with cytokines and cytokine receptors,mitogen-activated protein kinase(MAPK)signaling pathway,cytokine-cytokine receptor interaction,and adrenergic signaling in cardiomyocytes.Hypomethylated lncRNAs were mainly involved in 4 pathways:Renal cell carcinoma,tumor necrosis factor signaling pathway,transcriptional misregulation in cancer,and cytokine-cytokine receptor interaction.Additionally,MeRIP-PCR confirmed the changes in m^(6)A methylation levels in NR_033339,NR_122111,NR_130744,and NR_026800,consistent with microarray analysis.Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB,key genes in the MAPK signaling pathway.Conclusion:This study reveals the m^(6)A modification patterns of lncRNAs in middle ear cholesteatoma,suggests a direction for further research into the role of lncRNA m^(6)A modification in the etiology of cholesteatoma.The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma.
基金supported by the National Natural Science Foundation of China(U22A20383,82003668)the Natural Science Foundation of Zhejiang Province(LD22H300002,LQ21H300002)Ningbo Technology Innovation 2025 Major Special Project(2022Z150).
文摘Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and paracrine abilities give hope for neuroprotection.Recent studies on SC modification have enhanced therapeutic effects for IS,including gene transfection,nanoparticle modification,biomaterial modification and pretreatment.Thesemethods improve survival rate,homing,neural differentiation,and paracrine abilities in ischemic areas.However,many problems must be resolved before SC therapy can be clinically applied.These issues include production quality and quantity,stability during transportation and storage,as well as usage regulations.Herein,we reviewed the brief pathogenesis of IS,the“multi-mechanism”advantages of SCs for treating IS,various SC modification methods,and SC therapy challenges.We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
基金Key Project Research and Development Plan of Hainan Province(No.ZDYF2020134,ZDYF2022SHFZ283)Natural Science Foundation of Hainan Province(No.821QN391)。
文摘N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.
基金the financial support received from Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management(IRC-HTCM)at King Fahd University of Petroleum and Minerals(KFUPM),specifically under project#INHE2213。
文摘Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory.
文摘This work investigates the flow and agglomeration behaviors of battery grade Li_(2)CO_(3)powder and the influence of stearic acid surface modification.The degree of agglomeration is directly related to the uniformity of Li_(2)CO_(3)and its powder mixtures.According to the Chinese National Nonferrous Metal Industry Standard,battery grade Li_(2)CO_(3)powder has D50 equal to 3–8μm which belongs to a micron-sized superfine powder.Therefore,with the extension of storage time,the serious agglomeration phenomenon occurs due to the large specific surface area and rough and irregular powder particles.The Hausner ratio(HR)of the unmodified sample increases from 1.14 to 1.41,and the corresponding flowability is classified as good to poor.Instead,among samples with doping stearic acid,the optimum amount of it is 0.10 wt%which exhibits an extremely stable HR value from 1.14 to 1.16.Meanwhile,after 156 days,the repose angle(AR)obtained for samples without surface modification and using 0.10 wt%stearic acid are calculated to be 49°and 28°,respectively.Based on the values of HR and AR,the flowability of the unmodified sample is poor while the sample modified with 0.10 wt%of stearic acid still maintain excellent powder flow property.Moreover,The LiMn_(2)O_(4)cathode material synthesized from modified Li_(2)CO_(3)powder with a stearic acid content of 0.10 wt%exhibits good crystallinity and comparable electrochemical performance to that prepared by commercial Li_(2)CO_(3).These results indicate that stearic acid has the potential to be an ideal modifier for battery grade Li_(2)CO_(3)powder that needs to be kept for a long time.
基金supported by the National Natural Science Foundation of China,Nos.82030071 (to JH),82272495 (to YC)Science and Technology Major Project of Changsha,No.kh2103008 (to JH)Graduate Students’ Independent Innovative Projects of Hunan Province,No.CX20230311 (to YJ)。
文摘Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-methyladenosine(m^(6)A) modifications are the most common form of epigenetic regulation at the RNA level and play an essential role in biological processes. However, whether m^(6)A modifications participate in corticospinal tract regeneration after spinal cord injury remains unknown. We found that expression of methyltransferase 14 protein(METTL14) in the locomotor cortex was high after spinal cord injury and accompanied by elevated m^(6)A levels. Knockdown of Mettl14 in the locomotor cortex was not favorable for corticospinal tract regeneration and neurological recovery after spinal cord injury. Through bioinformatics analysis and methylated RNA immunoprecipitation-quantitative polymerase chain reaction, we found that METTL14 regulated Trib2 expression in an m^(6)A-regulated manner, thereby activating the mitogen-activated protein kinase pathway and promoting corticospinal tract regeneration. Finally, we administered syringin, a stabilizer of METTL14, using molecular docking. Results confirmed that syringin can promote corticospinal tract regeneration and facilitate neurological recovery by stabilizing METTL14. Findings from this study reveal that m^(6)A modification is involved in the regulation of corticospinal tract regeneration after spinal cord injury.
文摘We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.