Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc...Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating.展开更多
Ni coating was deposited on carbon steel by a mechanical attrition enhanced electroplating (MAEE) process. During the electroplating, the mechanical attrition(MA) was introduced by impact of glass balls on the sam...Ni coating was deposited on carbon steel by a mechanical attrition enhanced electroplating (MAEE) process. During the electroplating, the mechanical attrition(MA) was introduced by impact of glass balls on the sample surface with a special vibrating frequency. The surface and cross-sectional images of Ni coating were observed with SEM. The microstructure and crystallinity of coating were examined with TEM and XRD. The electrochemical performance of coating was measured with polarization curves and electrochemical impedance spectroscopy (EIS) and its mechanical behaviours, such as tensile strength and hardness, were studied. The results show that the MA has significant effects on the microstructure and property of the electroplated Ni coating. By MA, the coating becomes smooth, compact, thin and has refined grains and is free of cracks and pores. Consequently, the adhesion, tensile strength, hardness and corrosion resistance of coating are improved significantly.展开更多
Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatin...Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatings were also studied. It was found that the deposition parameters have significant effect on the mechanical properties of the Cu-Bi coatings. The microhardness has been improved from HVso165 of Cu coating to HVs0 250 of Cu-Bi composite coating prepared at 50 mA/cm2 for 20 min. Correspondingly, wear resistance of the Cu-Bi composite coating has also been enhanced significantly.展开更多
Galvanic corrosion behavior of Ti-1023 titanium alloy coupled 30CrMnSiA steel was investigated in 3.5% NaCl solution. Particular attention was given to the effect of three different electroplated coatings on corrosion...Galvanic corrosion behavior of Ti-1023 titanium alloy coupled 30CrMnSiA steel was investigated in 3.5% NaCl solution. Particular attention was given to the effect of three different electroplated coatings on corrosion behavior of the galvanic couple. Galvanic corrosion test was conducted on Ti-1023 titanium alloy which coupled Ni-electroplated 30CrMnSiA, Zn-electroplated 30CrMnSiA, Cd-electroplated 30CrMnSiA and bare 30CrMnSiA, respectively. Corrosion properties including open circuit potential (Eoc), galvanic corrosion potential (Eg), and galvanic corrosion current (lg) were monitored. Corrosion morphology was observed by optical microscope (OM) and corrosion mechanism was analyzed and discussed. The results show that the three electroplated coatings improve the corrosion resistance of the anode in different magnitudes. Ni-electroplated 30CrMnSiA and Cd-electroplated 30CrMnSiA coatings are found to be least susceptible to galvanic corrosion when coupled Ti-1023 titanium alloy. Zn-electroplated 30CrMnSiA is moderately susceptible to galvanic corrosion. But the bare 30CrMnSiA is highly susceptible to galvanic corrosion in corrosive environment.展开更多
Sand-wear resistance of nano scale alumina particle reinforced nickel matrix composite coating (n-Al2O3/Ni) prepared by brush electroplating technique was investigated via wear tests in sand-contaminated oil lubrica...Sand-wear resistance of nano scale alumina particle reinforced nickel matrix composite coating (n-Al2O3/Ni) prepared by brush electroplating technique was investigated via wear tests in sand-contaminated oil lubricant, comparing with that of AISI1045 steel and brush electroplated Ni coating. Effects of testing load, sand content and sand size on worn volume of the three materials, and also coating surface roughness on worn volume of the brush electroplated coatings were accessed. Results show that the worn volume of all the three materials increases with increasing of testing load, sand content and sand size. In the same conditions, n-Al2O3/Ni composite coating has the smallest worn volume while AISI1045 steel has the largest because of the n-Al2O3 particle effects. As to n-Al2O3/Ni and Ni coatings, the surface-polished coatings have obviously lower worn volume than the as-plated coatings. The brush electroplated n-Al2O3/Ni composite coating was employed to remanufacture the sand-worn bearing seats of a heavy vehicle and good results were gained.展开更多
A process of chromium electroplating using a standard bath with additives and active carbon particles was reported,and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table we...A process of chromium electroplating using a standard bath with additives and active carbon particles was reported,and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were investigated.Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient and excellent anti-wear properties when compared with the normal chromium electroplated ones.The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanisms of wear resistance of the composite coatings were studied.展开更多
Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientati...Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientation and hardness of the composite coating with monodispersed ZrO2 nanoparticles have lots of difference from the composite coating with agglomerated ZrO2 nanoparticles and pure nickel coating. Especially, the result of hardness shows that only a very low volume fraction (less than 1%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles are HV 529 and HV 393, respectively. The hardness value of the former composite coatings is over 1.3 times higher than that of the later. All these composite coatings are 2 - 3 times higher than that of pure nickel plating (HV 207) prepared under the same conditions.展开更多
Ni-W-P coatings were electrodeposited on copper substrates by pulse electroplating.Effects of electrolyte pH(1-3),temperature(40-80°C),average current density(1-7A/dm2)and pulse frequency(200-1000Hz)on deposition...Ni-W-P coatings were electrodeposited on copper substrates by pulse electroplating.Effects of electrolyte pH(1-3),temperature(40-80°C),average current density(1-7A/dm2)and pulse frequency(200-1000Hz)on deposition rate,structure and corrosion resistance performance of Ni-W-P coatings were studied by single factor method.Surface morphology,crystallographic structure and composition of Ni-W-P coatings were investigated by means of scanning electron microscopy,X-ray diffractometry and energy dispersive X-ray spectroscopy,respectively.Corrosion resistance performances of Ni-W-P coatings were studied by potentiodynamic polarization and electrochemical impedance spectroscopy in3.5%NaCl solution(mass fraction)and soil-containing solution.It was found that the pulse electroplated Ni-W-P coatings have superior corrosion resistance performance and the electroplating parameters significantly affect the structure and corrosion resistance performance of Ni-W-P coatings.The optimized parameters of pulse electroplating Ni-W-P coatings were as follows:pH2.0,temperature60°C,average current density4A/dm2,and pulse frequency600Hz.The Ni-W-P coating prepared under the optimized parameters has superior corrosion resistance(276.8kΩ)and compact surface without any noticeable defect.展开更多
The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electroche...The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellent electrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.展开更多
The present paper aims to investigate the influence of the current density in the electroplating process on the microstructure, crystal texture transformations, and corrosion behavior of Ni/Co pumice multilayer nanoco...The present paper aims to investigate the influence of the current density in the electroplating process on the microstructure, crystal texture transformations, and corrosion behavior of Ni/Co pumice multilayer nanocomposite coatings. The Ni/Co pumice composite coatings were prepared by deposition of Ni, followed by the simultaneous deposition of pumice nanoparticles (NPs) in a Co matrix via an electroplating process at various current densities. Afterward, the morphology, size, topography, and crystal texture of the obtained samples were investigated. Furthermore, electrochemical methods were used to investigate the corrosion behavior of the produced coatings in a solution of 3.5wt% NaCl. The results indicated that increasing the plating current density changed the mechanism of coating growth from the cell state to the column state, in- creased the coating thickness, roughness, and texture coefficient (TC) of the Co (203) plane, and reduced the amount of pumice NPs incorporated into the Ni/Co pumice composite. The electrochemical results also indicated that increasing the current density enhanced the corrosion resistance of the Ni/Co pumice composite.展开更多
The compact Cu coating with smooth surface and refined grain was prepared at high current density by mechanical attrition enhanced electroplating(MAEE) process.The mechanical attrition(MA) action was supplied by the v...The compact Cu coating with smooth surface and refined grain was prepared at high current density by mechanical attrition enhanced electroplating(MAEE) process.The mechanical attrition(MA) action was supplied by the vertical movement of glass balls on the sample surface with a special vibrating frequency.The plating bath was CuSO4 and H2SO4.It is demonstrated from field emission scanning electron microscopy(FESEM) results that the new coating shows smooth and refined surface morphology in high speed MAEE process.The further studies show that the spherical grain or pillar-shape grain can be obtained by traditional electroplating process at the current density of 200-600 mA/cm2.And the coatings are loosen,porous and easy to brush off.The pyramid-shape grain with diameter of less than 1 μm was obtained by MAEE process under the same condition.And the coatings are compact and pore-free.The rapid electroplating process can be obtained by MA action.展开更多
The TiB2 coatings deposited over nickel substrate by electroplating was investigated, which is in molten salt of a fluoride mixture involving KF, NaF, K2 TiF6 and KBF4. Effects of temperature, cathodic current density...The TiB2 coatings deposited over nickel substrate by electroplating was investigated, which is in molten salt of a fluoride mixture involving KF, NaF, K2 TiF6 and KBF4. Effects of temperature, cathodic current density (Jc) and duration on the coating's formation were examined. The composition, morphology and structure of the coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray detector (EDS) and X-ray diffraction (XRD). The results show that the coatings, with black, smooth and uniform appearance, are composed of predominating TiB2 and small amounts of nickel titanium oxide (Ni0.75 Ti0.125 O). The coatings show a nodular morphology and the grain size is dependent on the Jc and ranges about 1 - 10 μm. There is a linear relationship between the coating's thickness and the time of electrolysis within certain duration range. The reduction of the potassium can take place simultaneously with the electrochemical synthesis of TiB2 as the Jc is in excess of certain level. The hardness of the TiB2 coatings is likely to be deteriorated due to the presence of potassium and Ni0.75Ti0.125 O in the coatings.展开更多
NiP-SiC (≈1 1wt% P) composite coatings were electroplated in a Brenner type plating bath. The coatings had amorphous nano-phase composite structure. Direct current and alternating current electrochemical tests were...NiP-SiC (≈1 1wt% P) composite coatings were electroplated in a Brenner type plating bath. The coatings had amorphous nano-phase composite structure. Direct current and alternating current electrochemical tests were carried out on such coatings in a 3.5wt% solution of NaCl to evaluate their corrosion resistance. The potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) tests, and exposure experiments all show that the corrosion resistance of NiP-SiC coatings first increases and then decreases when the SiC content increases, but the corrosion resistance of NiP-SiC composite coating is better than that of amorphous NiP coatings.展开更多
Zn-Bi composite was synthesized by ionic co-discharge deposition and its properties were investigated. The results show that the Zn-Bi composite with the incorporation of Bi has a finer grain size than the pure Zn coa...Zn-Bi composite was synthesized by ionic co-discharge deposition and its properties were investigated. The results show that the Zn-Bi composite with the incorporation of Bi has a finer grain size than the pure Zn coating and improves the mechanical properties. The microhardness is increased by approximately two times simply by adding a small amount of Bi electrolyte into a Zn bath solution. A lower volume loss of the Zn-Bi composite coating compared with the pure Zn coating also indicates that the Zn-Bi coating has a better wear resistance.展开更多
The effects of electroplating conditions on the composition of N-W-SiC composite coating were studied; the znfiuence of heat-treatment and nitrocarburization on the microstructure, hardness and wear resistance of the ...The effects of electroplating conditions on the composition of N-W-SiC composite coating were studied; the znfiuence of heat-treatment and nitrocarburization on the microstructure, hardness and wear resistance of the coating were discussed. The results showed that an amorphous composite coating, containing(wt%) 50-55Ni, 42-45.IW and 3.0-7.6SiC, could be electroplated on the matrix. Afier heat-treatment or nitrocarburization the coating crystallized to form some new phases, and the haordness and wear resistance of the composite coating were enhanced retmarkably.展开更多
Fe-Ni alloy coatings were electrodeposited on ferritic stainless steel(FSS)in solutions containing FeSO4 and NiSO4.The effects of pH,[Fe2 +]/[Ni 2+](molar ratio)of electroplating solutions and cathode current density ...Fe-Ni alloy coatings were electrodeposited on ferritic stainless steel(FSS)in solutions containing FeSO4 and NiSO4.The effects of pH,[Fe2 +]/[Ni 2+](molar ratio)of electroplating solutions and cathode current density on deposition rate and surface appearances of the coatings were investigated.The results indicated that the deposition rate of the coating in solution with [Fe 2+ ]/[Ni 2+ ]of 0.4 slightly increased with increasing pH from 2.5 to 3.5 under the current density of 5.5 mA/cm 2 ,and then the deposition rate of the coating in solution with pH 4.0 began to decrease.The deposition rate also slightly increased with pH up to 3.5 under higher cathode current densities of 13.5 and 27 mA/cm2.Under 13.5 mA/cm 2,however,the coating deposited in solution with pH 4 was prone to crack or flake.The deposition rate increased and the surface of coatings became less smooth with increasing cathode current density.The effect of the ratio of[Fe2 +]to[Ni 2+]on deposition rate was not obvious.With increasing the ratio of [Fe2 +]to[Ni 2+]in plating solution,the content of Fe in the coatings increased;while the Ni content in the coatings decreased with the increase in the ratio of[Fe 2+ ]to[Ni 2+ ].The deposited coating consisted of Fe-Ni alloy phase.展开更多
Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first s...Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first synthesized through chemical coprecipitation with uniform distribution constituents.Electrodeposition was employed to coat pure Ni and Ni-(Ni-Cr)oxides(10,20,30,40,and 50 g/L)on the steel sheets.Transmission electron microscope and field emission scanning electron microscope were adopted to examine the microstructure of powders and coatings,and X-ray diffraction analysis was employed to study the chemical composition.The microhardness,thickness,and wear resistance of the coatings were assessed,polarization and electrochemical impedance spectroscopy(EIS)tests were conducted to analyze the corrosion behavior,and the corresponding equivalent circuit was developed.Results showed flawless and crack-free coatings for all samples and uniform distribution of nano-oxides in the Ni matrix for the samples of 10-30 g/L.Agglomerated oxides were detected at high concentrations.Maximum microhardness(HV 661),thickness(116μm),and wear resistance of coatings were found at 30 g/L.A three-loop equivalent circuit corresponded satisfactorily to all EIS data.The corrosion resistance increased with the nano-oxide concentration of up to 30 g/L but decreased at 40 g/L.The sample of 50 g/L showed the best corrosion resistance.展开更多
Magnesium alloys covered with metal coating display excellent corrosion resistance,wear resistance,conductivity and electromagnetic shielding properties.The electroless plating Ni-P as bottom layer following the elect...Magnesium alloys covered with metal coating display excellent corrosion resistance,wear resistance,conductivity and electromagnetic shielding properties.The electroless plating Ni-P as bottom layer following the electroplating nickel as surface layer on AZ91D magnesium alloy was investigated.The coating surface morphology was observed with SEM and the structure was analyzed with XRD.Electrochemical tests and salt spray tests were carried out to study the corrosion resistance.The experimental results indicate that the dual coating is uniform,compact and pore-free.The adhesion strength between magnesium alloy substrate and electroless plating Ni-P bottom layer and electroplating nickel surface layer is perfect.The corrosion resistance of AZ91D magnesium alloy is greatly improved after being protected with the dual coating.展开更多
基金Funded by Shenzhen-Hong Kong Innovative Collaborative Research and Development Program (Nos.SGLH20181109 110802117, CityU 9240014)Innovation Project of Southwestern Institute of Physics (Nos.202001XWCXYD002, 202301XWCX003)CNNC Young Talent Program (No.2023JZYF-01)。
文摘Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating.
基金Project (51172102/E020801) supported by the National Natural Science Foundation of ChinaProject (31805) supported by Doctoral Fund of Liaocheng University, China
文摘Ni coating was deposited on carbon steel by a mechanical attrition enhanced electroplating (MAEE) process. During the electroplating, the mechanical attrition(MA) was introduced by impact of glass balls on the sample surface with a special vibrating frequency. The surface and cross-sectional images of Ni coating were observed with SEM. The microstructure and crystallinity of coating were examined with TEM and XRD. The electrochemical performance of coating was measured with polarization curves and electrochemical impedance spectroscopy (EIS) and its mechanical behaviours, such as tensile strength and hardness, were studied. The results show that the MA has significant effects on the microstructure and property of the electroplated Ni coating. By MA, the coating becomes smooth, compact, thin and has refined grains and is free of cracks and pores. Consequently, the adhesion, tensile strength, hardness and corrosion resistance of coating are improved significantly.
基金Bright Sparks Unit,University Malaya for the financial support
文摘Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatings were also studied. It was found that the deposition parameters have significant effect on the mechanical properties of the Cu-Bi coatings. The microhardness has been improved from HVso165 of Cu coating to HVs0 250 of Cu-Bi composite coating prepared at 50 mA/cm2 for 20 min. Correspondingly, wear resistance of the Cu-Bi composite coating has also been enhanced significantly.
基金the National Science Foundation of China (No.50571003)
文摘Galvanic corrosion behavior of Ti-1023 titanium alloy coupled 30CrMnSiA steel was investigated in 3.5% NaCl solution. Particular attention was given to the effect of three different electroplated coatings on corrosion behavior of the galvanic couple. Galvanic corrosion test was conducted on Ti-1023 titanium alloy which coupled Ni-electroplated 30CrMnSiA, Zn-electroplated 30CrMnSiA, Cd-electroplated 30CrMnSiA and bare 30CrMnSiA, respectively. Corrosion properties including open circuit potential (Eoc), galvanic corrosion potential (Eg), and galvanic corrosion current (lg) were monitored. Corrosion morphology was observed by optical microscope (OM) and corrosion mechanism was analyzed and discussed. The results show that the three electroplated coatings improve the corrosion resistance of the anode in different magnitudes. Ni-electroplated 30CrMnSiA and Cd-electroplated 30CrMnSiA coatings are found to be least susceptible to galvanic corrosion when coupled Ti-1023 titanium alloy. Zn-electroplated 30CrMnSiA is moderately susceptible to galvanic corrosion. But the bare 30CrMnSiA is highly susceptible to galvanic corrosion in corrosive environment.
文摘Sand-wear resistance of nano scale alumina particle reinforced nickel matrix composite coating (n-Al2O3/Ni) prepared by brush electroplating technique was investigated via wear tests in sand-contaminated oil lubricant, comparing with that of AISI1045 steel and brush electroplated Ni coating. Effects of testing load, sand content and sand size on worn volume of the three materials, and also coating surface roughness on worn volume of the brush electroplated coatings were accessed. Results show that the worn volume of all the three materials increases with increasing of testing load, sand content and sand size. In the same conditions, n-Al2O3/Ni composite coating has the smallest worn volume while AISI1045 steel has the largest because of the n-Al2O3 particle effects. As to n-Al2O3/Ni and Ni coatings, the surface-polished coatings have obviously lower worn volume than the as-plated coatings. The brush electroplated n-Al2O3/Ni composite coating was employed to remanufacture the sand-worn bearing seats of a heavy vehicle and good results were gained.
文摘A process of chromium electroplating using a standard bath with additives and active carbon particles was reported,and the tribological behaviors of the composite coatings using the pin-on-disk tester and the table wear tester were investigated.Experimental results indicate that the electroplated chromium-active carbon composite coatings exhibited the low friction coefficient and excellent anti-wear properties when compared with the normal chromium electroplated ones.The formation of active carbon particles within the chromium matrices can be explained by SEM analysis and the mechanisms of wear resistance of the composite coatings were studied.
文摘Ni-ZrO2 nanocomposite coatings with monodispersed ZrO2 nanoparticles were prepared from the composite plating bath containing dispersant under DC electrodeposition condition. It is found that the morphology, orientation and hardness of the composite coating with monodispersed ZrO2 nanoparticles have lots of difference from the composite coating with agglomerated ZrO2 nanoparticles and pure nickel coating. Especially, the result of hardness shows that only a very low volume fraction (less than 1%) of monodispered ZrO2 nanoparticles in Ni-ZrO2 composite coatings will result in higher hardness of the coating. The hardness of Ni-ZrO2 nanocomposite coatings with monodispersed and agglomerated ZrO2 nanoparticles are HV 529 and HV 393, respectively. The hardness value of the former composite coatings is over 1.3 times higher than that of the later. All these composite coatings are 2 - 3 times higher than that of pure nickel plating (HV 207) prepared under the same conditions.
文摘Ni-W-P coatings were electrodeposited on copper substrates by pulse electroplating.Effects of electrolyte pH(1-3),temperature(40-80°C),average current density(1-7A/dm2)and pulse frequency(200-1000Hz)on deposition rate,structure and corrosion resistance performance of Ni-W-P coatings were studied by single factor method.Surface morphology,crystallographic structure and composition of Ni-W-P coatings were investigated by means of scanning electron microscopy,X-ray diffractometry and energy dispersive X-ray spectroscopy,respectively.Corrosion resistance performances of Ni-W-P coatings were studied by potentiodynamic polarization and electrochemical impedance spectroscopy in3.5%NaCl solution(mass fraction)and soil-containing solution.It was found that the pulse electroplated Ni-W-P coatings have superior corrosion resistance performance and the electroplating parameters significantly affect the structure and corrosion resistance performance of Ni-W-P coatings.The optimized parameters of pulse electroplating Ni-W-P coatings were as follows:pH2.0,temperature60°C,average current density4A/dm2,and pulse frequency600Hz.The Ni-W-P coating prepared under the optimized parameters has superior corrosion resistance(276.8kΩ)and compact surface without any noticeable defect.
文摘The preparation process and properties of the thermally prepared Ti anodes coated with IrO2+Ta2O5 was studied. The structure and morphologies of the IrO2+Ta2O5 coatings were determined by XRD and SEM. Their electrochemical properties were studied by polarization curve and cyclic voltammetry. Trivalent chromium electroplating using Ti/IrO2+Ta2O5 anodes is carried out and the results were analyzed. Results show that this anode exhibits excellent electrochemical activity and stability in sulfate electrolysis. The electrocatalytic activity is determined not only by the content of IrO2 but also the structure and morphology of the anode coatings. The electroplating results indicats that Ti/IrO2+Ta2O5 anodes have excellent capabilities and merits in improving the stability of trivalent chromium electroplating in sulfate system.
文摘The present paper aims to investigate the influence of the current density in the electroplating process on the microstructure, crystal texture transformations, and corrosion behavior of Ni/Co pumice multilayer nanocomposite coatings. The Ni/Co pumice composite coatings were prepared by deposition of Ni, followed by the simultaneous deposition of pumice nanoparticles (NPs) in a Co matrix via an electroplating process at various current densities. Afterward, the morphology, size, topography, and crystal texture of the obtained samples were investigated. Furthermore, electrochemical methods were used to investigate the corrosion behavior of the produced coatings in a solution of 3.5wt% NaCl. The results indicated that increasing the plating current density changed the mechanism of coating growth from the cell state to the column state, in- creased the coating thickness, roughness, and texture coefficient (TC) of the Co (203) plane, and reduced the amount of pumice NPs incorporated into the Ni/Co pumice composite. The electrochemical results also indicated that increasing the current density enhanced the corrosion resistance of the Ni/Co pumice composite.
基金Project(50671006) supported by the National Natural Science Foundation of China
文摘The compact Cu coating with smooth surface and refined grain was prepared at high current density by mechanical attrition enhanced electroplating(MAEE) process.The mechanical attrition(MA) action was supplied by the vertical movement of glass balls on the sample surface with a special vibrating frequency.The plating bath was CuSO4 and H2SO4.It is demonstrated from field emission scanning electron microscopy(FESEM) results that the new coating shows smooth and refined surface morphology in high speed MAEE process.The further studies show that the spherical grain or pillar-shape grain can be obtained by traditional electroplating process at the current density of 200-600 mA/cm2.And the coatings are loosen,porous and easy to brush off.The pyramid-shape grain with diameter of less than 1 μm was obtained by MAEE process under the same condition.And the coatings are compact and pore-free.The rapid electroplating process can be obtained by MA action.
文摘The TiB2 coatings deposited over nickel substrate by electroplating was investigated, which is in molten salt of a fluoride mixture involving KF, NaF, K2 TiF6 and KBF4. Effects of temperature, cathodic current density (Jc) and duration on the coating's formation were examined. The composition, morphology and structure of the coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray detector (EDS) and X-ray diffraction (XRD). The results show that the coatings, with black, smooth and uniform appearance, are composed of predominating TiB2 and small amounts of nickel titanium oxide (Ni0.75 Ti0.125 O). The coatings show a nodular morphology and the grain size is dependent on the Jc and ranges about 1 - 10 μm. There is a linear relationship between the coating's thickness and the time of electrolysis within certain duration range. The reduction of the potassium can take place simultaneously with the electrochemical synthesis of TiB2 as the Jc is in excess of certain level. The hardness of the TiB2 coatings is likely to be deteriorated due to the presence of potassium and Ni0.75Ti0.125 O in the coatings.
基金supported by the National High-Tech Research and Development Program of China(No.2002AA331080)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ200410028012)
文摘NiP-SiC (≈1 1wt% P) composite coatings were electroplated in a Brenner type plating bath. The coatings had amorphous nano-phase composite structure. Direct current and alternating current electrochemical tests were carried out on such coatings in a 3.5wt% solution of NaCl to evaluate their corrosion resistance. The potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) tests, and exposure experiments all show that the corrosion resistance of NiP-SiC coatings first increases and then decreases when the SiC content increases, but the corrosion resistance of NiP-SiC composite coating is better than that of amorphous NiP coatings.
基金financial support from the Bright Spark Unit, University of Malaya
文摘Zn-Bi composite was synthesized by ionic co-discharge deposition and its properties were investigated. The results show that the Zn-Bi composite with the incorporation of Bi has a finer grain size than the pure Zn coating and improves the mechanical properties. The microhardness is increased by approximately two times simply by adding a small amount of Bi electrolyte into a Zn bath solution. A lower volume loss of the Zn-Bi composite coating compared with the pure Zn coating also indicates that the Zn-Bi coating has a better wear resistance.
文摘The effects of electroplating conditions on the composition of N-W-SiC composite coating were studied; the znfiuence of heat-treatment and nitrocarburization on the microstructure, hardness and wear resistance of the coating were discussed. The results showed that an amorphous composite coating, containing(wt%) 50-55Ni, 42-45.IW and 3.0-7.6SiC, could be electroplated on the matrix. Afier heat-treatment or nitrocarburization the coating crystallized to form some new phases, and the haordness and wear resistance of the composite coating were enhanced retmarkably.
基金Project(12301014)supported by the National Undergraduate Innovation Program of China
文摘Fe-Ni alloy coatings were electrodeposited on ferritic stainless steel(FSS)in solutions containing FeSO4 and NiSO4.The effects of pH,[Fe2 +]/[Ni 2+](molar ratio)of electroplating solutions and cathode current density on deposition rate and surface appearances of the coatings were investigated.The results indicated that the deposition rate of the coating in solution with [Fe 2+ ]/[Ni 2+ ]of 0.4 slightly increased with increasing pH from 2.5 to 3.5 under the current density of 5.5 mA/cm 2 ,and then the deposition rate of the coating in solution with pH 4.0 began to decrease.The deposition rate also slightly increased with pH up to 3.5 under higher cathode current densities of 13.5 and 27 mA/cm2.Under 13.5 mA/cm 2,however,the coating deposited in solution with pH 4 was prone to crack or flake.The deposition rate increased and the surface of coatings became less smooth with increasing cathode current density.The effect of the ratio of[Fe2 +]to[Ni 2+]on deposition rate was not obvious.With increasing the ratio of [Fe2 +]to[Ni 2+]in plating solution,the content of Fe in the coatings increased;while the Ni content in the coatings decreased with the increase in the ratio of[Fe 2+ ]to[Ni 2+ ].The deposited coating consisted of Fe-Ni alloy phase.
文摘Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first synthesized through chemical coprecipitation with uniform distribution constituents.Electrodeposition was employed to coat pure Ni and Ni-(Ni-Cr)oxides(10,20,30,40,and 50 g/L)on the steel sheets.Transmission electron microscope and field emission scanning electron microscope were adopted to examine the microstructure of powders and coatings,and X-ray diffraction analysis was employed to study the chemical composition.The microhardness,thickness,and wear resistance of the coatings were assessed,polarization and electrochemical impedance spectroscopy(EIS)tests were conducted to analyze the corrosion behavior,and the corresponding equivalent circuit was developed.Results showed flawless and crack-free coatings for all samples and uniform distribution of nano-oxides in the Ni matrix for the samples of 10-30 g/L.Agglomerated oxides were detected at high concentrations.Maximum microhardness(HV 661),thickness(116μm),and wear resistance of coatings were found at 30 g/L.A three-loop equivalent circuit corresponded satisfactorily to all EIS data.The corrosion resistance increased with the nano-oxide concentration of up to 30 g/L but decreased at 40 g/L.The sample of 50 g/L showed the best corrosion resistance.
基金Project(2007CB613705)supported by the National Key Basic Research ProgramProject(2006BAE04B05-2)supported by the NationalKey Technology R&D Program of China
文摘Magnesium alloys covered with metal coating display excellent corrosion resistance,wear resistance,conductivity and electromagnetic shielding properties.The electroless plating Ni-P as bottom layer following the electroplating nickel as surface layer on AZ91D magnesium alloy was investigated.The coating surface morphology was observed with SEM and the structure was analyzed with XRD.Electrochemical tests and salt spray tests were carried out to study the corrosion resistance.The experimental results indicate that the dual coating is uniform,compact and pore-free.The adhesion strength between magnesium alloy substrate and electroless plating Ni-P bottom layer and electroplating nickel surface layer is perfect.The corrosion resistance of AZ91D magnesium alloy is greatly improved after being protected with the dual coating.