The microbial treatment of wastewater containing a high concentration of chromium from cold rolling mills was carried out as a pilot study. The pilot-scale equipment, technological process and results are described in...The microbial treatment of wastewater containing a high concentration of chromium from cold rolling mills was carried out as a pilot study. The pilot-scale equipment, technological process and results are described in this paper. Two kinds of wastewater with a high concentration of chromium were tested : one from a color coating line ; the other from a silicon steel line. The removal effect of Cr^6+ , T-Cr and chemical oxygen demand (COD) in wastewater was studied. The results showed that this microbial treatment technology could be used to treat the above two kinds of chromium-containing wastewater. The average concentrations of Cr^6+ in the color coating line effluent and the silicon steel line effluent were 0.02 mg/L and 0.04 mg/L respectively, and the average concentrations of T-Cr in the effluents were 0.71 mg/L and 0.74 mg/L respectively. Both were lower than the Sewage Discharge Standard (Cr^6+ 〈 0.5 mg/L,T-Cr 〈 1.5 mg/L). Furthermore, up to 60% of the COD was removed from chromate wastewater containing a high concentration COD ( 〉 3 g/L). The removal rate of COD was lower than 25% for chromate wastewater containing a low concentration COD ( 〈 3 g/L). Adding a flocculating agent was one of the effective ways of improving the COD removal rate from chromium-containing wastewater.展开更多
文摘The microbial treatment of wastewater containing a high concentration of chromium from cold rolling mills was carried out as a pilot study. The pilot-scale equipment, technological process and results are described in this paper. Two kinds of wastewater with a high concentration of chromium were tested : one from a color coating line ; the other from a silicon steel line. The removal effect of Cr^6+ , T-Cr and chemical oxygen demand (COD) in wastewater was studied. The results showed that this microbial treatment technology could be used to treat the above two kinds of chromium-containing wastewater. The average concentrations of Cr^6+ in the color coating line effluent and the silicon steel line effluent were 0.02 mg/L and 0.04 mg/L respectively, and the average concentrations of T-Cr in the effluents were 0.71 mg/L and 0.74 mg/L respectively. Both were lower than the Sewage Discharge Standard (Cr^6+ 〈 0.5 mg/L,T-Cr 〈 1.5 mg/L). Furthermore, up to 60% of the COD was removed from chromate wastewater containing a high concentration COD ( 〉 3 g/L). The removal rate of COD was lower than 25% for chromate wastewater containing a low concentration COD ( 〈 3 g/L). Adding a flocculating agent was one of the effective ways of improving the COD removal rate from chromium-containing wastewater.