The effect of water content on the electrorheological effect (ERE) behaviour of silica dispersions has been investigated. The types of silica powders were fumed silica, precipitated and acid washed silica and colloida...The effect of water content on the electrorheological effect (ERE) behaviour of silica dispersions has been investigated. The types of silica powders were fumed silica, precipitated and acid washed silica and colloidal silica. Silica dispersions with a water content varying in the range 10% - 30%, and with conducting ions deliberately added, were redispersed in chlorinated hydrocarbon oil and then the ER behaviour studied. Samples were tested on a static yield rig (SYR), an instrument which can measure both the yield stress and the conductivity. The effects of electric field strength and water content on the ERE were studied. The yield stress initially increased with increase in electric field strength and then decreased at high electric fields suggesting a breakdown in structure of the electrorheological fluid samples tested. It was also found that the ERE increased and electric saturation or electric breakdown shifted to lower electric fields as the water content increased. Higher electric fields caused a drop in the ERE.展开更多
目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车...目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车针去除模拟的龋坏后,采用自酸蚀粘接剂将牙体标本与复合树脂粘接制成试件。使用万能试验机对试件进行拉伸试验,测得断裂负荷和粘接强度,并采用单因素方差分析和Tukey多重比较进行统计学分析。采用扫描电子显微镜观察3种不同去龋方式处理后的牙本质表面形态,以及涂布自酸蚀粘接剂并固化后试件的横截面形态。结果:使用Er:YAG激光MSP模式处理后牙本质与复合树脂的粘接强度最高,SSP模式处理后次之,传统车针处理后最低,但差异无统计学意义(P>0.05)。扫描电子显微镜图像显示,Er:YAG激光MSP模式处理后的牙本质表面较平坦,牙本质小管内几乎没有残屑;Er:YAG激光SSP模式处理后的牙本质表面呈现鳞片状,牙本质小管内可见少量碎屑;而传统车针处理后牙本质小管大部分处于被表面牙本质部分甚至完全遮盖的状态,牙本质小管内充满残屑。结论:使用Er:YAG激光去龋相比传统车针去龋可以获得较好的牙本质粘接强度,且对牙本质小管的处理深度和洁净度明显优于传统车针去龋,其中MSP模式更佳。展开更多
Electrorheological (ER) properties of polyaniline (PAni), pumice and polyaniline/pumice composites (PAPC) were investigated. Polyaniline and PAni/pumice composite were prepared by oxidative polymerization. PAni/...Electrorheological (ER) properties of polyaniline (PAni), pumice and polyaniline/pumice composites (PAPC) were investigated. Polyaniline and PAni/pumice composite were prepared by oxidative polymerization. PAni/pumice particlesbased ER suspensions were prepared in silicone oil (SO), and their ER behavior was investigated as a function of shear rate, electric field strength, concentration and temperature. Sedimentation stabilities of suspensions were determined. It has been found that ER activity of all the suspensions increases with increasing electric field strength, concentration and decreasing shear rate. It has shown that the suspensions have a typical shear thinning non-Newtonian viscoelastic behavior. Yield stress of composite suspensions increased linearly with increasing applied electric field strength and with concentrations of the particles. The effect of high temperature on ER activity of purrfice/silicone oil systems was also investigated.展开更多
A new class of electrorheological (ER) material using rare earth (RE = Y) oxide as the substrate, NaNO3- doped Y2O3 materials, were synthesized using Na2CO3 and Y(NO3)3 as starting materials. Their ER performanc...A new class of electrorheological (ER) material using rare earth (RE = Y) oxide as the substrate, NaNO3- doped Y2O3 materials, were synthesized using Na2CO3 and Y(NO3)3 as starting materials. Their ER performance, dielectric property, and crystal structure were studied. The results show that doping NaNO3 can markedly enhance the ER activity of the Y2O3 material. For the suspensions of these materials in dimethyl silicone oil, a clear dependence of the shear stress on the doping degree of NANO3 was observed, and the optimal value of Na/Y molar ratio of 0.6 in doping degree was discovered, the relative viscosity ηr( ηE/η0, E = 4.2 kV·mm^-1) of the suspensions is nine times higher than that of pure Y2O3 material. The new results of the relationship between ER effect and the microstructure were obtained, which are helpful for further understanding the mechanism of ER effect and synthesizing a good ER material.展开更多
A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force ...A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force is given. Finally a quarter car model with ER damper is constructed. The skyhook control strategy is adopted to simulate the amplitude-frequency characteristics and the vibration of suspension system under random road excitation on the basis of ER damper characteristics. The response curves of the vertical acceleration, the suspension dynamic working space and the tyre dynamic loading are obtained. Simulation results show that the acceleration is reduced effectively and then the ride comfort is improved by the skyhook control law.展开更多
Composite particles consisting of polyaniline( PAn) core and barium tilanate ( BaTiO3) Layer shell were synthesized. The PAn-BaTiO3 composites particles were characterized with TEM and XRD. The dielectric behavior of ...Composite particles consisting of polyaniline( PAn) core and barium tilanate ( BaTiO3) Layer shell were synthesized. The PAn-BaTiO3 composites particles were characterized with TEM and XRD. The dielectric behavior of particles was tested and the electrorhcologicak(ER) behavior of the suspensions of PAn/ BaTiO3 panicles in chlorinated paraffin oil with a 20vol % was investigated under DC electric field. The results show that the ER effect of composite particle is far stronger than that of pure polyaniline and barium titanate which mere synthesized by the stone method. pH and thickness of BuTiO3 have an important. influence on the ER effects.展开更多
By using oxalate group-modified TiO2 nanoparticles as the dispersing phase, different kinds of silicone oil with various viscosities and terminal groups(hydroxyl, hydrogen, and methyl) were used as the dispersing me...By using oxalate group-modified TiO2 nanoparticles as the dispersing phase, different kinds of silicone oil with various viscosities and terminal groups(hydroxyl, hydrogen, and methyl) were used as the dispersing media to prepare different electrorheological(ER) fluids. Their zero-field viscosity, yield stress under direct current electric fields, ER efficiency, shear stability, leakage current density, and sedimentation stability were tested to study the effect of carrier liquid on the properties of ER fluids. The results indicate that the zerofield viscosity, the yield stress, and the leakage current density increase with increasing viscosity of the silicone oils. The effects of the viscosity on the ER efficiency, the shear stability, and the sedimentation ratio depend on the competition between the viscous resistance and the aggregation of the particles. Among the three ER fluids prepared with silicone oil with different terminal groups, hydroxyl-terminated oil based sample has the highest zero-field viscosity, the highest field-induced yield stress and ER efficiency, the largest current density, and the best sedimentation stability.展开更多
Exposing waxy oils to an electric field may significantly improve their cold flowability.Our previous study has shown that interfacial polarization,i.e.,charged particle accumulation on the wax particle surface,is the...Exposing waxy oils to an electric field may significantly improve their cold flowability.Our previous study has shown that interfacial polarization,i.e.,charged particle accumulation on the wax particle surface,is the primary mechanism of the electrorheological behavior of waxy oils.However,the way that charged particles interact with wax particles under an electric field remains unknown.In this study,we found no viscosity and impedance change for two waxy crude oils after their exposure to a high-voltage electric field.However,the yield stresses were reduced obviously.We thus proposed that the collision of colloidal particles such as resins and asphaltenes with the wax particles could be an essential mechanism that the wax particle structure was weakened.To verify this hypothesis,a series of ad hoc experiments were carried out,i.e.,by performing electrorheological tests on model waxy oils containing additives removable under an electric field,including electrically-neutral colloidal particles(Fe3O4),charged colloidal particles(resins),and oil-soluble electrolyte(C22H14CoO4),respectively,and demonstrated that upon application of a high-voltage electric field,charged particles in a waxy oil may move and thus collide with wax particles,and consequently adhere to the wax particle surface.The particle collision results in damage to the wax particle network,and the electrostatic repulsion arising from the adhesion of the charged particle on the wax particle diminishes attraction between wax particles.This study clarifies the process of interfacial polarization.展开更多
The nanosized particle materials of doped-TiO_2 with Y_2O_3 were prepared by means of sol-gel technique for use in electrorheological (ER) fluids, and their crystal structures were measured by X-ray diffraction (XRD) ...The nanosized particle materials of doped-TiO_2 with Y_2O_3 were prepared by means of sol-gel technique for use in electrorheological (ER) fluids, and their crystal structures were measured by X-ray diffraction (XRD) analysis. To compare with the pure TiO_2, a distinct enhancement in the shear stress under dc electric field was found by using such materials. This can be explained by the increase of the dielectric loss and dielectric constant at low frequency. The effects of the crystal structure of the particles on the dielectric property and ER performance of materials were investigated.展开更多
We have prepared novel coated particles, with a conductor graphite core and a dielectric TiO2 coating, as the dispersed phase of electrorheological fluids. One order of magnitude enhancement in the shear stress is obt...We have prepared novel coated particles, with a conductor graphite core and a dielectric TiO2 coating, as the dispersed phase of electrorheological fluids. One order of magnitude enhancement in the shear stress is obtained by using such composite particles, when it is compared with that of TiO2 particles. The experimental results show a way to get excellent ER system.展开更多
文摘The effect of water content on the electrorheological effect (ERE) behaviour of silica dispersions has been investigated. The types of silica powders were fumed silica, precipitated and acid washed silica and colloidal silica. Silica dispersions with a water content varying in the range 10% - 30%, and with conducting ions deliberately added, were redispersed in chlorinated hydrocarbon oil and then the ER behaviour studied. Samples were tested on a static yield rig (SYR), an instrument which can measure both the yield stress and the conductivity. The effects of electric field strength and water content on the ERE were studied. The yield stress initially increased with increase in electric field strength and then decreased at high electric fields suggesting a breakdown in structure of the electrorheological fluid samples tested. It was also found that the ERE increased and electric saturation or electric breakdown shifted to lower electric fields as the water content increased. Higher electric fields caused a drop in the ERE.
文摘目的:比较使用不同模式Er:YAG激光以及传统车针去龋后牙本质与复合树脂的粘接强度。方法:选用人类离体磨牙模拟龋坏,分别采用Er:YAG激光中短脉冲(medium short pulse,MSP)模式、Er:YAG激光超短脉冲(super short pulse,SSP)模式和传统车针去除模拟的龋坏后,采用自酸蚀粘接剂将牙体标本与复合树脂粘接制成试件。使用万能试验机对试件进行拉伸试验,测得断裂负荷和粘接强度,并采用单因素方差分析和Tukey多重比较进行统计学分析。采用扫描电子显微镜观察3种不同去龋方式处理后的牙本质表面形态,以及涂布自酸蚀粘接剂并固化后试件的横截面形态。结果:使用Er:YAG激光MSP模式处理后牙本质与复合树脂的粘接强度最高,SSP模式处理后次之,传统车针处理后最低,但差异无统计学意义(P>0.05)。扫描电子显微镜图像显示,Er:YAG激光MSP模式处理后的牙本质表面较平坦,牙本质小管内几乎没有残屑;Er:YAG激光SSP模式处理后的牙本质表面呈现鳞片状,牙本质小管内可见少量碎屑;而传统车针处理后牙本质小管大部分处于被表面牙本质部分甚至完全遮盖的状态,牙本质小管内充满残屑。结论:使用Er:YAG激光去龋相比传统车针去龋可以获得较好的牙本质粘接强度,且对牙本质小管的处理深度和洁净度明显优于传统车针去龋,其中MSP模式更佳。
基金This work was financially supported by the TUBITAK (Turkish Scientific and Technical Research Foundation)Süleyman Demirel University (Nos. TBAG-AY-344, SDU BAP 03-m-714)
文摘Electrorheological (ER) properties of polyaniline (PAni), pumice and polyaniline/pumice composites (PAPC) were investigated. Polyaniline and PAni/pumice composite were prepared by oxidative polymerization. PAni/pumice particlesbased ER suspensions were prepared in silicone oil (SO), and their ER behavior was investigated as a function of shear rate, electric field strength, concentration and temperature. Sedimentation stabilities of suspensions were determined. It has been found that ER activity of all the suspensions increases with increasing electric field strength, concentration and decreasing shear rate. It has shown that the suspensions have a typical shear thinning non-Newtonian viscoelastic behavior. Yield stress of composite suspensions increased linearly with increasing applied electric field strength and with concentrations of the particles. The effect of high temperature on ER activity of purrfice/silicone oil systems was also investigated.
文摘A new class of electrorheological (ER) material using rare earth (RE = Y) oxide as the substrate, NaNO3- doped Y2O3 materials, were synthesized using Na2CO3 and Y(NO3)3 as starting materials. Their ER performance, dielectric property, and crystal structure were studied. The results show that doping NaNO3 can markedly enhance the ER activity of the Y2O3 material. For the suspensions of these materials in dimethyl silicone oil, a clear dependence of the shear stress on the doping degree of NANO3 was observed, and the optimal value of Na/Y molar ratio of 0.6 in doping degree was discovered, the relative viscosity ηr( ηE/η0, E = 4.2 kV·mm^-1) of the suspensions is nine times higher than that of pure Y2O3 material. The new results of the relationship between ER effect and the microstructure were obtained, which are helpful for further understanding the mechanism of ER effect and synthesizing a good ER material.
文摘A semi-active control of vehicle suspension system with eleetrorheolngieal (ER) damper is presented. ER fluid characteristics are introduced based on the Bingham plasticity model first. Then ER damper working force is given. Finally a quarter car model with ER damper is constructed. The skyhook control strategy is adopted to simulate the amplitude-frequency characteristics and the vibration of suspension system under random road excitation on the basis of ER damper characteristics. The response curves of the vertical acceleration, the suspension dynamic working space and the tyre dynamic loading are obtained. Simulation results show that the acceleration is reduced effectively and then the ride comfort is improved by the skyhook control law.
基金Funded by National Natural Science Foundation of China (No. 59832090 and No. 29904005)
文摘Composite particles consisting of polyaniline( PAn) core and barium tilanate ( BaTiO3) Layer shell were synthesized. The PAn-BaTiO3 composites particles were characterized with TEM and XRD. The dielectric behavior of particles was tested and the electrorhcologicak(ER) behavior of the suspensions of PAn/ BaTiO3 panicles in chlorinated paraffin oil with a 20vol % was investigated under DC electric field. The results show that the ER effect of composite particle is far stronger than that of pure polyaniline and barium titanate which mere synthesized by the stone method. pH and thickness of BuTiO3 have an important. influence on the ER effects.
基金Funded by the National Natural Science Foundation of China(51478088)
文摘By using oxalate group-modified TiO2 nanoparticles as the dispersing phase, different kinds of silicone oil with various viscosities and terminal groups(hydroxyl, hydrogen, and methyl) were used as the dispersing media to prepare different electrorheological(ER) fluids. Their zero-field viscosity, yield stress under direct current electric fields, ER efficiency, shear stability, leakage current density, and sedimentation stability were tested to study the effect of carrier liquid on the properties of ER fluids. The results indicate that the zerofield viscosity, the yield stress, and the leakage current density increase with increasing viscosity of the silicone oils. The effects of the viscosity on the ER efficiency, the shear stability, and the sedimentation ratio depend on the competition between the viscous resistance and the aggregation of the particles. Among the three ER fluids prepared with silicone oil with different terminal groups, hydroxyl-terminated oil based sample has the highest zero-field viscosity, the highest field-induced yield stress and ER efficiency, the largest current density, and the best sedimentation stability.
基金financial support from the National Natural Science Foundation of China(No.52174066,No.51534007).
文摘Exposing waxy oils to an electric field may significantly improve their cold flowability.Our previous study has shown that interfacial polarization,i.e.,charged particle accumulation on the wax particle surface,is the primary mechanism of the electrorheological behavior of waxy oils.However,the way that charged particles interact with wax particles under an electric field remains unknown.In this study,we found no viscosity and impedance change for two waxy crude oils after their exposure to a high-voltage electric field.However,the yield stresses were reduced obviously.We thus proposed that the collision of colloidal particles such as resins and asphaltenes with the wax particles could be an essential mechanism that the wax particle structure was weakened.To verify this hypothesis,a series of ad hoc experiments were carried out,i.e.,by performing electrorheological tests on model waxy oils containing additives removable under an electric field,including electrically-neutral colloidal particles(Fe3O4),charged colloidal particles(resins),and oil-soluble electrolyte(C22H14CoO4),respectively,and demonstrated that upon application of a high-voltage electric field,charged particles in a waxy oil may move and thus collide with wax particles,and consequently adhere to the wax particle surface.The particle collision results in damage to the wax particle network,and the electrostatic repulsion arising from the adhesion of the charged particle on the wax particle diminishes attraction between wax particles.This study clarifies the process of interfacial polarization.
文摘The nanosized particle materials of doped-TiO_2 with Y_2O_3 were prepared by means of sol-gel technique for use in electrorheological (ER) fluids, and their crystal structures were measured by X-ray diffraction (XRD) analysis. To compare with the pure TiO_2, a distinct enhancement in the shear stress under dc electric field was found by using such materials. This can be explained by the increase of the dielectric loss and dielectric constant at low frequency. The effects of the crystal structure of the particles on the dielectric property and ER performance of materials were investigated.
基金the National Natural Science Foundation of China! (No.19834020).
文摘We have prepared novel coated particles, with a conductor graphite core and a dielectric TiO2 coating, as the dispersed phase of electrorheological fluids. One order of magnitude enhancement in the shear stress is obtained by using such composite particles, when it is compared with that of TiO2 particles. The experimental results show a way to get excellent ER system.