Pericardial barrier destruction,inflammatory cell infiltration,and fibrous tissue hyperplasia,trigger adhesions after cardiac surgery.There are few anti-adhesion materials that are both functional and sutureable for p...Pericardial barrier destruction,inflammatory cell infiltration,and fibrous tissue hyperplasia,trigger adhesions after cardiac surgery.There are few anti-adhesion materials that are both functional and sutureable for pericardial reconstruction.Besides,a few studies have reported on the mechanism of preventing pericardial adhesion.Herein,a functional barrier membrane with sutureability was developed via a modified electrospinning method.It was composed of poly(L-lactide-co-caprolactone)(PLCL)nanofibers,poly(vinyl alcohol)(PVA)aerogel,and melatonin,named PPMT.The PPMT had a special microstructure manifested as a staggered arrangement of nanofibers on the surface and a layered macroporous aerogel structure in a cross-section.Besides providing the porosity and hydrophilicity obtained from PVA,the structure also had suitable mechanical properties for stitching due to the addition of PLCL nanofibers.Furthermore,it inhibited the proliferation of fibroblasts by suppressing the activation of Fas and P53,and achieved anti-inflammatory effects by affecting the activity of inflammatory cells and reducing the release of pro-inflammatory factors,such as interleukin 8(IL-8)and tumor necrosis factorα(TNF-α).Finally,in vivo transplantation showed that it up-regulated the expression of matrix metalloproteinase-1(MMP1)and tissue inhibitor of metalloproteinase-1(TIMP1),and down-regulated the expression of Vinculin and transforming growth factorβ(TGF-β)in the myocardium,thereby reducing the formation of adhesions.Collectively,these results demonstrate a great potential of PPMT membrane for practical application to anti-adhesion.展开更多
Electrospinning technology has become a research hotspot becauseof its advantages, such as simple operation, low cost, large specific surfacearea, high porosity, and good fiber continuity. Here, a new type of composit...Electrospinning technology has become a research hotspot becauseof its advantages, such as simple operation, low cost, large specific surfacearea, high porosity, and good fiber continuity. Here, a new type of compositenanoair filter paper was prepared using electrospinning technology. Toimprove the practicability of air filter base paper, phenolic resin was used as acuring agent to improve the strength. The results show that the electrospunnanoair filter paper with air filter paper as the receiving substrate andpolyvinyl alcohol (PVA) solution as the spinning solution excellentlyperformed in all aspects. The influence of the thickness (spinning time) of thePVA nanofiber membrane on the micromorphology, physical properties, andfiltration performance of the electrospun nanoair filter paper was analyzed.According to the ISO 5011-2014 standard, the initial resistance, filtrationefficiency, mean pore size, and dust capacity of the electrospun nanoair filterpaper were 77.3 Pa, 99.9941%, 3.50 μm, and 146 g/m^(2), respectively, when thespinning time was 15 min.展开更多
Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on t...Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on the component regulation,and the structure regulation of ZIFs-derived M-N-C materials by a simple preparation method has been barely reported.Herein,using a one-step electrospinning method with subsequent pyrolysis,we have prepared a bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber(Co-N-C/CNF)composite electrocatalyst with the porous carbon nanocages arranged one by one in the highly conductive carbon nanofibers.Profiting from the fully exposed active sites and improved conductivity,the Co-NC/CNF catalyst exhibits an excellent ORR performance even surpassing the commercial Pt/C catalyst.Density functional theory(DFT)results demonstrate that the CoNP-N1-C2 active sites on Co-N-C/CNF make the core contribution to the improvement of ORR properties.Moreover,the zinc-air battery(ZAB)based on the Co-N-C/CNF catalyst also shows outstanding discharge performance.This study provides a new strategy for the preparation and structural design for ZIFs-derived M-N-C materials as efficient ORR catalysts.展开更多
基金The National Natural Science Fund of China(81873923)Shanghai Science and Technology Development Fund(20Y11910600,18441901900)supported this study.
文摘Pericardial barrier destruction,inflammatory cell infiltration,and fibrous tissue hyperplasia,trigger adhesions after cardiac surgery.There are few anti-adhesion materials that are both functional and sutureable for pericardial reconstruction.Besides,a few studies have reported on the mechanism of preventing pericardial adhesion.Herein,a functional barrier membrane with sutureability was developed via a modified electrospinning method.It was composed of poly(L-lactide-co-caprolactone)(PLCL)nanofibers,poly(vinyl alcohol)(PVA)aerogel,and melatonin,named PPMT.The PPMT had a special microstructure manifested as a staggered arrangement of nanofibers on the surface and a layered macroporous aerogel structure in a cross-section.Besides providing the porosity and hydrophilicity obtained from PVA,the structure also had suitable mechanical properties for stitching due to the addition of PLCL nanofibers.Furthermore,it inhibited the proliferation of fibroblasts by suppressing the activation of Fas and P53,and achieved anti-inflammatory effects by affecting the activity of inflammatory cells and reducing the release of pro-inflammatory factors,such as interleukin 8(IL-8)and tumor necrosis factorα(TNF-α).Finally,in vivo transplantation showed that it up-regulated the expression of matrix metalloproteinase-1(MMP1)and tissue inhibitor of metalloproteinase-1(TIMP1),and down-regulated the expression of Vinculin and transforming growth factorβ(TGF-β)in the myocardium,thereby reducing the formation of adhesions.Collectively,these results demonstrate a great potential of PPMT membrane for practical application to anti-adhesion.
文摘Electrospinning technology has become a research hotspot becauseof its advantages, such as simple operation, low cost, large specific surfacearea, high porosity, and good fiber continuity. Here, a new type of compositenanoair filter paper was prepared using electrospinning technology. Toimprove the practicability of air filter base paper, phenolic resin was used as acuring agent to improve the strength. The results show that the electrospunnanoair filter paper with air filter paper as the receiving substrate andpolyvinyl alcohol (PVA) solution as the spinning solution excellentlyperformed in all aspects. The influence of the thickness (spinning time) of thePVA nanofiber membrane on the micromorphology, physical properties, andfiltration performance of the electrospun nanoair filter paper was analyzed.According to the ISO 5011-2014 standard, the initial resistance, filtrationefficiency, mean pore size, and dust capacity of the electrospun nanoair filterpaper were 77.3 Pa, 99.9941%, 3.50 μm, and 146 g/m^(2), respectively, when thespinning time was 15 min.
基金The work was supported by the National Natural Science Foundation of China(Nos.52104314,51972287,U2004172,and 51502269)Natural Science Foundation of Henan Province(No.202300410368)+2 种基金the Special Project of Key Research Development and Promotion of Henan Province(No.222102240084)Sponsored by Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT001)the Foundation for University Key Teachers of Henan Province(No.2020GGJS009).
文摘Proper regulation of metal-nitrogen carbon(M-N-C)materials derived from zeolitic imidazolate frameworks(ZIFs)is essential to enhance the oxygen reduction reaction(ORR)performance.However,most of the reports focus on the component regulation,and the structure regulation of ZIFs-derived M-N-C materials by a simple preparation method has been barely reported.Herein,using a one-step electrospinning method with subsequent pyrolysis,we have prepared a bead-like cobalt-nitrogen co-doped carbon nanocage/carbon nanofiber(Co-N-C/CNF)composite electrocatalyst with the porous carbon nanocages arranged one by one in the highly conductive carbon nanofibers.Profiting from the fully exposed active sites and improved conductivity,the Co-NC/CNF catalyst exhibits an excellent ORR performance even surpassing the commercial Pt/C catalyst.Density functional theory(DFT)results demonstrate that the CoNP-N1-C2 active sites on Co-N-C/CNF make the core contribution to the improvement of ORR properties.Moreover,the zinc-air battery(ZAB)based on the Co-N-C/CNF catalyst also shows outstanding discharge performance.This study provides a new strategy for the preparation and structural design for ZIFs-derived M-N-C materials as efficient ORR catalysts.