In this paper, investigation has been done in the computer simulation of the electrostatic coupling IBC by using the developed finite-element models, in which a.the incidence and reflection of electronic signal in the...In this paper, investigation has been done in the computer simulation of the electrostatic coupling IBC by using the developed finite-element models, in which a.the incidence and reflection of electronic signal in the upper arm model were analyzed by using the theory of electromagnetic wave;b.the finite-element models of electrostatic coupling IBC were developed by using the electromagnetic analysis package of ANSYS software;c.the signal attenuation of electrostatic coupling IBC were simulated under the conditions of different signal frequencies, electrodes directions, electrodes sizes and transmission distances. Finally, some important conclusions are deduced on the basis of simulation results.展开更多
Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary wave...Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed.展开更多
基金National Natural Science Foundation of China ( No. 60801050)the Basic Research Foundationof Beijing Institute of Technology of China ( No. 1010050320804) National Innovation Experiment Program for University Students( 2010)
文摘In this paper, investigation has been done in the computer simulation of the electrostatic coupling IBC by using the developed finite-element models, in which a.the incidence and reflection of electronic signal in the upper arm model were analyzed by using the theory of electromagnetic wave;b.the finite-element models of electrostatic coupling IBC were developed by using the electromagnetic analysis package of ANSYS software;c.the signal attenuation of electrostatic coupling IBC were simulated under the conditions of different signal frequencies, electrodes directions, electrodes sizes and transmission distances. Finally, some important conclusions are deduced on the basis of simulation results.
文摘Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed.