To improve the performance and reliability of microelectromechanical system's devices, it is necessary to understand the effect of friction which exists in the majority of microelectromechanical systems (MEMS) with...To improve the performance and reliability of microelectromechanical system's devices, it is necessary to understand the effect of friction which exists in the majority of microelectromechanical systems (MEMS) with a large ratio of surface area to their volume. The model of electrostatic tangential force of the shuttle in laterally driven comb microresonator is established based on the rule of energy conservation. The effects of microscale, surface roughness, applied voltage, and micro asperities or dents or holes formed in fabrication are investigated, and the electrostatic resistance between two charged moving plates is analyzed. The analytic results are coincident well with those of ANSYS simulation. It is found that the electrostatic resistance becomes high as the increase of the ratio of the shuttle width to the gap between moving plates and the relative surface roughness or the increment of the applied voltage.展开更多
基金National Natural Science Foundation of China(No.50135040)Science Foundation of Shanghai Municipality Education Commission through the Key Discipline Program(No.970104).
文摘To improve the performance and reliability of microelectromechanical system's devices, it is necessary to understand the effect of friction which exists in the majority of microelectromechanical systems (MEMS) with a large ratio of surface area to their volume. The model of electrostatic tangential force of the shuttle in laterally driven comb microresonator is established based on the rule of energy conservation. The effects of microscale, surface roughness, applied voltage, and micro asperities or dents or holes formed in fabrication are investigated, and the electrostatic resistance between two charged moving plates is analyzed. The analytic results are coincident well with those of ANSYS simulation. It is found that the electrostatic resistance becomes high as the increase of the ratio of the shuttle width to the gap between moving plates and the relative surface roughness or the increment of the applied voltage.