期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of iron electrovalence and species on growth and astaxanthin production of Haematococcus pluvialis 被引量:1
1
作者 蔡明刚 李哲 齐安翔 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2009年第2期370-375,共6页
To increase the cell concentration and the accumulation of astaxanthin in the cultivation of Haematococcus pluvialis, effects of different iron electrovalencies (Fe^2+-EDTA and Fe^3+-EDTA) and species (Fe-EDTA, F... To increase the cell concentration and the accumulation of astaxanthin in the cultivation of Haematococcus pluvialis, effects of different iron electrovalencies (Fe^2+-EDTA and Fe^3+-EDTA) and species (Fe-EDTA, Fe(OH)x^32x and FeC6H5O7) addition on cell growth and accumulation of astaxanthin were studied. Results show that different iron electrovalencies have various effects on cell growth and astaxanthin accumulation of H. pluvialis. Compared with Fe^3+-EDTA, Fe^2+-EDTA stimulate more effectively the formation of astaxanthin. The maximum astaxanthin content (30.70 mg/g biomass cell) was obtained under conditions of 18 μmol/L Fe^2+-EDTA, despite the lower cell density (2.3×10^5 cell/ml) in such condition. Fe^3+-EDTA is more effective than Fe^2+-EDTA in improving the cell growth. Especially, the maximal steady-state cell density, 2.9×10^5 cell/ml was obtained at 18 μmol/L Fe^3+-EDTA addition. On the other hand, all the various species of iron (EDTA-Fe, Fe(OH)x^32x, FeC6H5O7) are capable to improve the growth of the algae and astaxanthin production. Among the three iron species, FeC6H5O7 performed the best. Under the condition of a higher concentration (36 μmol/L) of FeC6H5O7, the cell density and astaxanthin production is 2 and 7 times higher than those of iron-limited group, respectively. The present study demonstrates that the effects of the stimulation with different iron species increased in the order of FeC6H5O7, Fe(OH)x^32x and EDTA-Fe. 展开更多
关键词 ASTAXANTHIN PRODUCTION Haematococcus pluvialis iron electrovalence iron species
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部