为了提高文本聚类的性能,采用k-modes算法进行文本聚类,并采用知识图谱进行样本预分析,以提高k-modes的文本聚类适用度。采用知识图谱进行样本预处理,对待聚类的文本进行知识图谱三元分析,并生成对应概念、实体和关系的样本集合;接着建...为了提高文本聚类的性能,采用k-modes算法进行文本聚类,并采用知识图谱进行样本预分析,以提高k-modes的文本聚类适用度。采用知识图谱进行样本预处理,对待聚类的文本进行知识图谱三元分析,并生成对应概念、实体和关系的样本集合;接着建立k-modes文本聚类模型,设定簇内节点至簇中心的距离值之和为目标函数,通过轮流固定隶属矩阵和聚类簇矩阵,不断求解目标函数的最小值直至目标函数值稳定,获得簇中心,最后根据簇中心及各节点到簇中心距离来确定聚类结果。实验表明,经过知识图谱分析之后,k-modes算法能够获得更优的纯度、标准互信息和F值性能,且聚类纯度的均方根误差(Root mean squared error,RMSE)值更低;和常用文本聚类算法相比,对于UCI集和新闻集,该文算法均表现出了更高的聚类准确率。展开更多
文摘为了提高文本聚类的性能,采用k-modes算法进行文本聚类,并采用知识图谱进行样本预分析,以提高k-modes的文本聚类适用度。采用知识图谱进行样本预处理,对待聚类的文本进行知识图谱三元分析,并生成对应概念、实体和关系的样本集合;接着建立k-modes文本聚类模型,设定簇内节点至簇中心的距离值之和为目标函数,通过轮流固定隶属矩阵和聚类簇矩阵,不断求解目标函数的最小值直至目标函数值稳定,获得簇中心,最后根据簇中心及各节点到簇中心距离来确定聚类结果。实验表明,经过知识图谱分析之后,k-modes算法能够获得更优的纯度、标准互信息和F值性能,且聚类纯度的均方根误差(Root mean squared error,RMSE)值更低;和常用文本聚类算法相比,对于UCI集和新闻集,该文算法均表现出了更高的聚类准确率。