期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Comparison of Aerodynamic Forces and Moments Calculated by Three-dimensional Unsteady Blade Element Theory and Computational Fluid Dynamics 被引量:4
1
作者 Loan Thi Kim Au Hoang Vu Phan Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第4期746-758,共13页
In previous work, we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces. This method is referred... In previous work, we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces. This method is referred to as Unsteady Blade Element Theory (UBET). A comparison between UBET and Computational Fluid Dynamics (CFD) for flapping wings with high flapping frequencies (〉30 Hz) could not be found in literature survey. In this paper, UBET that considers the movement of pressure center in pitching-moment estimation was validated using the CFD method. We investigated three three-dimensional (3D) wing kinematics that produce negative, zero, and positive aerodynamic pitching moments. For all cases, the instantaneous aerodynamic forces and pitching moments estimated via UBET and CFD showed similar trends. The differences in average vertical forces and pitching moments about the center of gravity were about 10% and 12%, respectively. Therefore, UBET is proven to reasonably estimate the aerodynamic forces and pitching moment for flight dynamic study of FW-MAV. However, the differences in average wing drags and pitching moments about the feather axis were more than 20%. Since study of aerodynamic power requires reasonable estimation of wing drag and pitching moment about the feather axis, UBET needs further im- provement for hilzher accuracy. 展开更多
关键词 blade element theory UNSTEADY computational fluid dynamics flapping wings BIOMIMETIC
原文传递
Optimal Wing Rotation Angle by the Unsteady Blade Element Theory for Maximum Translational Force Generation in Insect-mimicking Flapping-wing Micro Air Vehicle 被引量:1
2
作者 Loan Thi Kim Au Hoang Vu Phan Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第2期261-270,共10页
This paper provides a parametric study to obtain the optimal wing rotation angle for the generation of maximum transla- tional force in an insect-mimicking Flapping-Wing Micro Air Vehicle (FWMAV) during hovering. Th... This paper provides a parametric study to obtain the optimal wing rotation angle for the generation of maximum transla- tional force in an insect-mimicking Flapping-Wing Micro Air Vehicle (FWMAV) during hovering. The blade element theory and momentum theory were combined to obtain the equation from which the translational aerodynamic force could be esti- mated. This equation was converted into a non-dimensional form, so that the effect of normalized parameters on the thrust coefficient could be analyzed. The research showed that the thrust coefficient for a given wing section depends on two factors, the rotation angle of the wing section and the ratio of the chord to the travel distance of the wing section in one flapping cycle. For each ratio that we investigated, we could arrive at an optimal rotation angle corresponding to a maximum thrust coefficient. This study may be able to provide guidance for the FWMAV design. 展开更多
关键词 FWMAV optimal rotation angle parametric study blade element theory momentum theory
原文传递
THE RATIONALISM THEORY AND ITS FINITE ELEMENT ANALYSIS METHOD OF SHELL STRUCTURES
3
作者 李龙元 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第4期395-402,共8页
In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
关键词 THE RATIONALISM theory AND ITS FINITE element ANALYSIS METHOD OF SHELL STRUCTURES THAN
下载PDF
Theory of the Origin of Terrestrial and Lunar Ores
4
作者 Alexander N. Safronov 《International Journal of Geosciences》 2023年第6期547-583,共37页
In this study, the theory of ore formation on the Earth and the Moon was developed. It is shown that ore deposits on the Earth and the Moon were mainly formed simultaneously with the separation of the Moon from the pr... In this study, the theory of ore formation on the Earth and the Moon was developed. It is shown that ore deposits on the Earth and the Moon were mainly formed simultaneously with the separation of the Moon from the protoplanet and the formation of the oldest continents. The formation of terrestrial ores occurred as a result of the release of intermediate and heavy chemical elements from the deep layers of the protoplanet and the subsequent process of adhesion to old terrestrial geological faults. The time of terrestrial and lunar ores formations corresponds to the boundary between the Tonian and Cryogenian Periods (~720 Ma). Lunar ore formation processes are different on the near and far sides. The farside of the Moon is a single piece of the protoplanetary lithosphere, so ores there could be formed mainly due to the overflow of igneous rocks over the edge of the lunar continent. On the nearside, due to the rapid cooling, ores were formed in the area of navel-string during the drip-liquid separation of the Moon from the Earth. Due to the fact that the Moon separated at the first stage, the amount of water and methane on it is limited. In periods after the Cryogenian, volcanic, lava and sedimentary rocks on Earth could be enriched with intermediate elements due to the disruption of vertical stratification during galactic storms. To analyze this, a comparison of terrestrial volcanic and lunar pseudo-volcanic activity was carried out in the work. 展开更多
关键词 Comet Impact Galaxy Storm Galaxy Calm elemental Buoyancy theory Mantle-Core Layers Ores Origin
下载PDF
Powell's optimal identification of material constants of thin-walled box girders based on Fibonacci series search method
5
作者 张剑 叶见曙 周储伟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第1期97-106,共10页
A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fi... A dynamic Bayesian error function of material constants of the structure is developed for thin-walled curve box girders. Combined with the automatic search scheme with an optimal step length for the one-dimensional Fibonacci series, Powell's optimization theory is used to perform the stochastic identification of material constants of the thin-walled curve box. Then, the steps in the parameter identification are presented. Powell's identification procedure for material constants of the thin-walled curve box is compiled, in which the mechanical analysis of the thin-walled curve box is completed based on the finite curve strip element (FCSE) method. Some classical examples show that Powell's identification is numerically stable and convergent, indicating that the present method and the compiled procedure are correct and reliable. During the parameter iterative processes, Powell's theory is irrelevant with the calculation of the FCSE partial differentiation, which proves the high computation efficiency of the studied methods. The stochastic performances of the system parameters and responses axe simultaneously considered in the dynamic Bayesian error function. The one-dimensional optimization problem of the optimal step length is solved by adopting the Fibonacci series search method without the need of determining the region, in which the optimized step length lies. 展开更多
关键词 Powell's theory thin-walled curve box material constant Fibonacci seriessearch method finite curve strip element theory
下载PDF
Modal Analysis of Battery Box Based on ANSYS
6
作者 Jianong Wang Xiaoyu Zhao 《World Journal of Engineering and Technology》 2016年第2期290-295,共6页
At present, the development of the traditional car is more and more troubled by the high cost of environmental pollution and oil prices, many countries have paid increasingly attention to the research and development ... At present, the development of the traditional car is more and more troubled by the high cost of environmental pollution and oil prices, many countries have paid increasingly attention to the research and development of electric vehicles. And vehicle battery box, as the heart of the automobile power system, and many difficulties still exist in its research and development. This paper is based on ANSYS. By using the finite element theory, it is to analyze the modal characteristics of the battery box and frequency vibration characteristics. Having a more comprehensive grasp of the dynamic performance of the battery box is the key to solve the new energy automotive research and development of issues. 展开更多
关键词 New Energy Battery Box Finite element theory Mode Analysis
下载PDF
QUANTITATIVE PREDICTION FOR SPRINGBACK OF UNLOADING AND TRIMMING IN SHEET METAL STAMPING FORMING 被引量:7
7
作者 LiuYuqi LiuJunhua +1 位作者 HuPing LiYunxing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期190-192,196,共4页
Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending spr... Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending springback of typical U-pattern is studied. At the same time the springback values of the drawing of patterns' unloading and trimming about the satellite aerial reflecting surface are predicted and also compared with those of the practical punch. Above two springbacks all obtain satisfactory results, which provide a kind of effective quantitative pre-prediction of springback for the practical engineers. 展开更多
关键词 Sheet metal stamping forming Unloading springback Trimming springback Discrete kirchhoff theory(DKT) Finite element method
下载PDF
Traditional medicine in India
8
作者 Yu Shi Chao Zhang Xiaodong Li 《Journal of Traditional Chinese Medical Sciences》 2021年第S01期51-55,共5页
India has a long history of traditional medicine,and Ayurveda is the most representative system.Similar to traditional Chinese medicine,Ayurveda is a life science derived from experience.It emphasizes that human healt... India has a long history of traditional medicine,and Ayurveda is the most representative system.Similar to traditional Chinese medicine,Ayurveda is a life science derived from experience.It emphasizes that human health requires both personalized medicine and a holistic approach.This article takes Ayurveda as an example to introduce traditional Indian medicine,hoping to provide readers with a preliminary understanding of the development of traditional medicine in India. 展开更多
关键词 Traditional Indian medicine AYURVEDA Five elements theory Three humoralisms theory
下载PDF
Aeroelastic Responses for Wind Turbine Blade Considering Bend-Twist Coupled Effect
9
作者 Li Yijin Wang Tongguang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期16-25,共10页
The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic l... The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic loads calculated by unsteady blade element momentum model with a dynamic inflow and the dynamic stall correction,the dynamics equations of blade are built.The Newmark implicit algorithm is used to solve the dynamics equations.Results of the sectional properties and blade structure model are compared with the multi-cell beam method and the ANSYS using shell elements.It is proved that the method is effective with high precision.Moreover,the effects on the aeroelastic response caused by bend-twist coupling are analyzed.Torsional direction is deflected toward the upwind direction as a result of coupling effects.The aerodynamic loads and the displacement are reduced. 展开更多
关键词 variational asymptotic beam sectional analysis(VABS) wind turbine unsteady blade element momen tum theory dynamic stall aeroelastic responses
下载PDF
Fracture behavior and self-sharpening mechanisms of polycrystalline cubic boron nitride in grinding based on cohesive element method 被引量:5
10
作者 Xin HUANG Haonan LI +1 位作者 Zhiwen RAO Wenfeng DING 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第12期2727-2742,共16页
Unlike monocrystalline cubic boron nitride(CBN), polycrystalline CBN(PCBN) shows not only higher fracture resistance induced by tool-workpiece interaction but also better selfsharpening capability;therefore, efforts h... Unlike monocrystalline cubic boron nitride(CBN), polycrystalline CBN(PCBN) shows not only higher fracture resistance induced by tool-workpiece interaction but also better selfsharpening capability;therefore, efforts have been devoted to the study of PCBN applications in manufacturing engineering. Most of the studies, however, remain qualitative due to difficulties in experimental observations and theoretical modeling and provide limited in-depth understanding of the self-sharpening behavior/mechanism. To fill this research gap, the present study investigates the self-sharpening process of PCBN abrasives in grinding and analyzes the macro-scale fracture behavior and highly localized micro-scale crack propagation in detail. The widely employed finite element(FE) method, together with the classic Voronoi diagram and cohesive element technique,is used considering the pronounced success of FE applications in polycrystalline material modeling.Grinding trials with careful observation of the PCBN abrasive morphologies are performed to validate the proposed method. The self-sharpening details, including fracture morphology, grinding force, strain energy, and damage dissipation energy, are studied. The effects of maximum grain cut depths(MGCDs) and grinding speeds on the PCBN fracture behavior are discussed, and their optimum ranges for preferable PCBN self-sharpening performance are suggested. 展开更多
关键词 Cohesive element theory Finite element model Fracture behavior scale PCBN abrasive grain Voronoi diagram
原文传递
Influence of differential longitudinal cyclic pitch on flight dynamics of coaxial compound helicopter 被引量:2
11
作者 Yanqin ZHAO Ye YUAN Renliang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期207-220,共14页
The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simula... The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simulated by a revised rotor aerodynamics model,where an improved Blade Element Momentum Theory(BEMT)is proposed.Comparisons with the rotor inflow distributions and aircraft trim results from literature validate the accuracy of the model.Then,the influence of the DLCP on the flight dynamics of the aircraft is analysed.The trim characteristics indicate that a negative DLCP can reduce collective and differential collective inputs in low speed forward flight,and the negative longitudinal gradient is alleviated.Moreover,a moderate DLCP can reduce the rotor and total power consumption by 4.68%and 2.9%,respectively.As DLCP further increases,the increased propeller power and unbalanced thrust allocation offset the improvement.In high-speed flight,DLCP does not improve the performance except for extra lateral and heading stick displacements.In addition,the tip clearance is degraded throughout the speed envelope due to the differential pitching moment and the higher thrust from the lower rotor.Meanwhile,the changed rotor efficiency and induced velocity alter low-speed dynamic stability and controllability.The pitch and roll subsidences are slightly degraded with the DLCP,while the heave subsidence,dutch roll and phugoid modes are improved.Lastly,the on-axis controllability,including collective,differential collective pitch,longitudinal and lateral cyclic pitches,varies with DLCP due to its effect on rotor efficiency and inflow distribution.In conclusion,a reasonable DLCP is recommended to adjust the rotor interaction and improve aircraft performance,and further to alter the flight dynamics and aerodynamics of aircraft. 展开更多
关键词 Blade element momentum theory Coaxial compound helicopter Differential longitudinal cyclic pitch Interaction model Tip clearance
原文传递
Pitching Moment Generation in an Insect-Mimicking Flapping-Wing System 被引量:3
12
作者 Tri Quang Truong Vu Hoang Phan +1 位作者 Sanjay P. Sane Hoon Cheol Park 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第1期36-51,共16页
Unlike birds, insects lack control surfaces at the tail and hence most insects modify their wing kinematics to produce control forces or moments while flapping their wings. Change of the flapping angle range is one of... Unlike birds, insects lack control surfaces at the tail and hence most insects modify their wing kinematics to produce control forces or moments while flapping their wings. Change of the flapping angle range is one of the ways to modify wing kinematics, resulting in relocation of the mean Aerodynamic force Center (mean AC) and finally creating control moments. In an attempt to mimic this feature, we developed a flapping-wing system that generates a desired pitching moment during flap- ping-wing motion. The system comprises a flapping mechanism that creates a large and symmetric flapping motion in a pair of wings, a flapping angle change mechanism that modifies the flapping angle range, artificial wings, and a power source. From the measured wing kinematics, we have found that the flapping-wing system can properly modify the flapping angle ranges. The measured pitching moments show that the flapping-wing system generates a pitching moment in a desired direction by shifting the flapping angle range. We also demonstrated that the system can in practice change the longitudinal attitude by generating a nonzero pitching moment. 展开更多
关键词 flapping-wing system pitching moment flapping angle unsteady blade element theory mean aerodynamic center center of gravity
原文传递
New results on Cll and C12 lattices with applications to Grothendieck categories and torsion theories
13
作者 Toma ALBU Mihai IOSIF 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第4期815-828,共14页
In this paper, which is a continuation of our previous paper [T. Albu, M. Iosif, A. Tercan, The conditions (Ci) in modular lattices, and applications, J. Algebra Appl. 15 (2016), http: dx.doi.org/10.1142/S0219498... In this paper, which is a continuation of our previous paper [T. Albu, M. Iosif, A. Tercan, The conditions (Ci) in modular lattices, and applications, J. Algebra Appl. 15 (2016), http: dx.doi.org/10.1142/S0219498816500018], we investigate the latticial counterparts of some results about modules satisfying the conditions (Cll) or (C12). Applications are given to Grothendieck categories and module categories equipped with hereditary torsion theories. 展开更多
关键词 Modular complement lattice C12 theory element LATTICE upper closed element LATTICE Goldie dimension continuous lattice essential element uniform lattice condition (Ci) Cll socle Grothendieck category torsion
原文传递
Unsteady aerodynamic noise prediction of contra-rotating open rotor using meshless method
14
作者 Zhiliang HONG Meng SU +3 位作者 Haitao ZHANG Zerui XU Lin DU Lingfeng CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS 2024年第8期144-165,共22页
The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-di... The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-dimensional unsteady prediction model based on the meshless method is presented.The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method,the blade element momentum theory and vortex lattice method.Then,the acoustic field is obtained through the Farassat’s formulation 1A.Validation of this method is conducted on a CROR,and a mesh-based method,e.g.,Nonlinear Harmonic(NLH)method,is also employed for comparison.It is found that the presented method is three times faster than NLH method while maintaining a comparable precision.A thorough parametric analysis is also carried out to illustrate the effects of rotational speed,rotor-rotor spacing and rear rotor diameter on the noise level.The rotor speed is found to be the most influencing factor,and by optimizing the speed difference between the front and rear rotors,a notable noise reduction can be expected.The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications. 展开更多
关键词 Contra-Rotating Open Rotor(CROR) Aerodynamic noise Blade element momentum theory Viscosity vortex particle method Farassat’s formulation 1A
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部