For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can b...For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.展开更多
Articular cartilage is a layer of low-friction,load-bearing soft hydrated tissue covering bone-ends in diarthrosis,which plays an important role in spreading the load,reducing the joint contact stress,joint friction a...Articular cartilage is a layer of low-friction,load-bearing soft hydrated tissue covering bone-ends in diarthrosis,which plays an important role in spreading the load,reducing the joint contact stress,joint friction and wear during exercise.The vital mechanical function展开更多
The effects of direct extracts of compost (DEC), aerated fermentation extracts of compost (AFEC) and non-aerated fermentation extracts of compost (NAFEC) on cucumber growth and the action mechanisms were evaluated bas...The effects of direct extracts of compost (DEC), aerated fermentation extracts of compost (AFEC) and non-aerated fermentation extracts of compost (NAFEC) on cucumber growth and the action mechanisms were evaluated based on the structure and activity analysis of humic-like substances. AFEC increased cucumber growth most significantly, followed by DEC and NAFEC, which was insignificant compared to the control treatment. Humic-like substances from compost extracts played an important role in promoting cucumber growth. Application of humic-like substances stimulated auxin-like activity and increased chlorophyll content and nitrogen accumulation in plants. The positive auxin-like activity of humic-like substances could be attributed to the relative distribution of special carbon groups, such as those with a large amount of peptidic and carbohydratic groups or with a low content of phenolic groups. In conclusion, the best growth promotion by application of AFEC was mainly attributed to the humic-like substances in the AFEC.展开更多
This paper seeks to outline the temperature effect on the buckling properties of ultra-thin-walled lenticular collapsible composite tube(LCCT) subjected to axial compression.The buckling tests of the LCCT specimens ...This paper seeks to outline the temperature effect on the buckling properties of ultra-thin-walled lenticular collapsible composite tube(LCCT) subjected to axial compression.The buckling tests of the LCCT specimens subjected to axial compression were carried out on INSTRON-500 N servo-hydraulic machine in dry state and at the temperatures of 25 C, 100 C and 80 C. The load–displacement curves and buckling initiation loads were measured and the buckling initiation mechanism was discussed from experimental observations. Experiments show that the buckling initiation load, on average, is only about 2.2% greater at the low temperature of 80 C than at the room temperature of 25 C due to the material hardening, demonstrating an insignificant increase in the buckling initiation load, whereas it is about 19.5% lower at the high temperature of 100 C than at the room temperature owing to the material softening, implying a significant decrease in the buckling initiation load. The failure mode of the LCCT in axial compression tests at three different temperatures can be reckoned to be characteristic of the buckling initiation and propagation around the central region until rupture. The finite element(FE) model is presented to simulate the buckling initiation mechanism based on the eigenvalue-based methodology. Good correlation between experimental and numerical results is achieved.展开更多
基金Projects(51405516,U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Science and Technology Program for Hunan Provincial Science and Technology Department,ChinaProject(2013zzts040)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.
基金National Natural Science Foundation of China,10872147Natural Science Foundation of Tianjin,09JCYBJC1400
文摘Articular cartilage is a layer of low-friction,load-bearing soft hydrated tissue covering bone-ends in diarthrosis,which plays an important role in spreading the load,reducing the joint contact stress,joint friction and wear during exercise.The vital mechanical function
基金Supported by the Ministry of Agriculture Public Benefit Research Foundation of China (No. 201103004)the National Key Technology R&D Program of China (No. 2010AA10Z401)
文摘The effects of direct extracts of compost (DEC), aerated fermentation extracts of compost (AFEC) and non-aerated fermentation extracts of compost (NAFEC) on cucumber growth and the action mechanisms were evaluated based on the structure and activity analysis of humic-like substances. AFEC increased cucumber growth most significantly, followed by DEC and NAFEC, which was insignificant compared to the control treatment. Humic-like substances from compost extracts played an important role in promoting cucumber growth. Application of humic-like substances stimulated auxin-like activity and increased chlorophyll content and nitrogen accumulation in plants. The positive auxin-like activity of humic-like substances could be attributed to the relative distribution of special carbon groups, such as those with a large amount of peptidic and carbohydratic groups or with a low content of phenolic groups. In conclusion, the best growth promotion by application of AFEC was mainly attributed to the humic-like substances in the AFEC.
基金supported by the National Natural Science Foundation of China (Nos. 51075019 and 51375033)Aeronautical Science Foundation (No. 20095251024) of Chinathe Fundamental Research Funds for the Central Universities (No. YWF-13-T-RSC-121) of China
文摘This paper seeks to outline the temperature effect on the buckling properties of ultra-thin-walled lenticular collapsible composite tube(LCCT) subjected to axial compression.The buckling tests of the LCCT specimens subjected to axial compression were carried out on INSTRON-500 N servo-hydraulic machine in dry state and at the temperatures of 25 C, 100 C and 80 C. The load–displacement curves and buckling initiation loads were measured and the buckling initiation mechanism was discussed from experimental observations. Experiments show that the buckling initiation load, on average, is only about 2.2% greater at the low temperature of 80 C than at the room temperature of 25 C due to the material hardening, demonstrating an insignificant increase in the buckling initiation load, whereas it is about 19.5% lower at the high temperature of 100 C than at the room temperature owing to the material softening, implying a significant decrease in the buckling initiation load. The failure mode of the LCCT in axial compression tests at three different temperatures can be reckoned to be characteristic of the buckling initiation and propagation around the central region until rupture. The finite element(FE) model is presented to simulate the buckling initiation mechanism based on the eigenvalue-based methodology. Good correlation between experimental and numerical results is achieved.