Rapidly solidified Al-Ti base alloys were prepared by melt spinning at the cooling rate about 107 K/s. The melt-spun ribbons were used to observe the dricrostructures after heat treatment.In the supersaturated Al-Tl-S...Rapidly solidified Al-Ti base alloys were prepared by melt spinning at the cooling rate about 107 K/s. The melt-spun ribbons were used to observe the dricrostructures after heat treatment.In the supersaturated Al-Tl-Si alloy, age hardening occurred after 1 h anneal in the temperature range of 4000~500℃, which seems to be attributed to the precipitation of metastable Ll2- (Al,Si)3Ti phase. However. the microhardness was relatively low because of the low v/o and the insufflcient stability of precipitates. Thus. Cr was added to Al-Ti-Si alloys in order to stabilize the microstructures and to increase the v/o of precipitate5. As a result. the alIoys containing Cr were evaluated to possess the improved properties at the service temperature.展开更多
The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these e...The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.展开更多
The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and micro...The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and microhardness test.Results show that both ε.and θ carbides,during auto-tempering, may precipitate from the low-carbon martensite matrix at the same time in the 20SiMn2V steel,however,the precipitation of the ε-carbides can be inhibited by the REM contained in the 20SiMn2 VRE steel,resulting in change of the type of precipitated carbides and decrease of the extent of auto-tempering.The“in-situ”ob- servations show that the decomposition of martensite is also inhibited by the REM contained in the 20SiMn2 VRE steel during low temperature tempering.展开更多
Increasing the print quality is the critical requirement for the additive manufactured complex part of aero-engines of nickel-based superalloys.A study of the effects of Co and Nb on the crack is performed focusing on...Increasing the print quality is the critical requirement for the additive manufactured complex part of aero-engines of nickel-based superalloys.A study of the effects of Co and Nb on the crack is performed focusing on the selective laser melting(SLM)nickel-based superalloy.In this paper,the solvus temperature of γ',crack characteristics,microstructure,thermal expansion,and mechanical properties of SLM nickel-based superalloy are investigated by varying the content of Co and Nb.The alloy with 15Co/0Nb shows the highest comprehensive quality.Nb increases the crack risk and thermal deformation,and then Co accelerates the stress release.Therefore,Co is an extremely important alloying element for improving the quality of SLM nickel-based superalloy.Finally,the crack growth kinetics and the strain difference are discussed to reveal the SLM crack regular that is affected by time or temperature.The analysis work on the effect of alloying elements can obtain an effective foundational theory to guide the composition optimization of SLM nickel-based superalloys.展开更多
Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the...Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.展开更多
Three different chromizing coatings were produced on Ni substrate using a conventional pack-cementation method with Al2O3,Al2O3+CeO2 and CeO2 acting as filler,respectively,at a greatly decreased temperature(700 ℃)...Three different chromizing coatings were produced on Ni substrate using a conventional pack-cementation method with Al2O3,Al2O3+CeO2 and CeO2 acting as filler,respectively,at a greatly decreased temperature(700 ℃).Effects of different fillers on the isothermal and cyclic oxidation resistance of chromizing coating in air at 850 ℃ were comparably investigated.Microstructure results show that the addition of CeO2 into the filler significantly retards the grain growth of the chromizing coating.Oxidation results indicate that the chromizing coating using CeO2 as filler exhibits somewhat increased oxidation resistance than the normal chromizmg coating,while the chromizing coating using Al2O3+CeO2 as filler exhibits much better oxidation resistance.The effects of different fillers on the oxidation behaviors were discussed in detail.展开更多
Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation...Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation performances of the produced Ni3Al coatings were comparatively investigated, with the emphasis on the effect of Y2O3. SEM/EDAX and TEM characterizations showed that the dispersion of Y2O3 refines the grains. Oxidation at 900 °C for 100 h showed that the addition of Y2O3 significantly improved the cyclic oxidation resistance of Ni3Al coating. The effect of Y2O3 on the microstructure and the oxidation of the Ni3Al coating were discussed in detail.展开更多
By using CeO2 particles instead of part of Al2O3 particles as filler, the CeO2 was successfully entrapped into the outer layer of the chromizing coatings on the as-deposited nanocrystalline (NC) and microcrystalline...By using CeO2 particles instead of part of Al2O3 particles as filler, the CeO2 was successfully entrapped into the outer layer of the chromizing coatings on the as-deposited nanocrystalline (NC) and microcrystalline (MC) Ni films using a conventional pack-cementation method at 800 °C. For comparison, chromizing was also performed under the same condition on MC Ni film using Al2O3 as filler without CeO2 particles. SEM/EDX and TEM results indicate that the refinement of Ni grain and CeO2 entrapped into the chromizing coatings refine the grain of the chromizing coating. Oxidation at 900 °C indicates that compared with the CeO2-free chromizing coating, the CeO2-dispersed chromizing coating exhibits an increased oxidation resistance. For the CeO2-dispersed chromizing coating, the refinement of Ni grain size significantly decreases the transient-oxidation scaling rate of the chromizing coatings. Together with this, the CeO2-dispersed chromizing coating formed on NC Ni exhibits a better oxidation resistance.展开更多
A numerical model for generating normal fault earthquakes in the Qinghai-Xizang Plateau′S upper crust is constructed with 3-D elasto-viscous finite element method. Based on the numerical simulation calculation,some c...A numerical model for generating normal fault earthquakes in the Qinghai-Xizang Plateau′S upper crust is constructed with 3-D elasto-viscous finite element method. Based on the numerical simulation calculation,some conclusions were got:If the effective viscosity of the upper crust material is less than that of lower strata of the crust in the Qinghai-Xizang Plateau, even under the strong push of India continent,the stress state of the upper crust can still be extensional in south part of the Qinghai-Xizang Plateau.Numerical simulations show that the stress state changes with the depth of the lithosphere,from extensional stress state in upper crust to compressive in the lower part.Extensional stress state may exist mainly in the upper crust of the south part of the Qinghai-Xizang Plateau.展开更多
A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations ...A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations are derived in detail for the interface element.All the involved matrices are of the same form as those of a solid element,which makes the incorporation of the model into a finite element program straightforward.Three examples are then numerically simulated using the interface element.Reasonable results confirm the correctness of the proposed model and motivate its application in hydromechanical contact problems in the future.展开更多
The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segr...The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segregated in the liquid at sold-liquid interface,changed the solidification morphology and reduced the secondary arm spacing markedly.展开更多
C^1 natural element method (C^1 NEM) is applied to strain gradient linear elasticity, and size effects on mi crostructures are analyzed. The shape functions in C^1 NEM are built upon the natural neighbor interpolati...C^1 natural element method (C^1 NEM) is applied to strain gradient linear elasticity, and size effects on mi crostructures are analyzed. The shape functions in C^1 NEM are built upon the natural neighbor interpolation (NNI), with interpolation realized to nodal function and nodal gradient values, so that the essential boundary conditions (EBCs) can be imposed directly in a Galerkin scheme for partial differential equations (PDEs). In the present paper, C^1 NEM for strain gradient linear elasticity is constructed, and sev- eral typical examples which have analytical solutions are presented to illustrate the effectiveness of the constructed method. In its application to microstructures, the size effects of bending stiffness and stress concentration factor (SCF) are studied for microspeciem and microgripper, respectively. It is observed that the size effects become rather strong when the width of spring for microgripper, the radius of circular perforation and the long axis of elliptical perforation for microspeciem come close to the material characteristic length scales. For the U-shaped notch, the size effects decline obviously with increasing notch radius, and decline mildly with increasing length of notch.展开更多
In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow ra...In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.展开更多
In the framework of density functional theory (DFT), the electronic excitations and nonlinear optical (NLO) properties of six binuclear transition metal cluster anions with the formula of [Ch2M-(μ-Ch)2-M'CN]^...In the framework of density functional theory (DFT), the electronic excitations and nonlinear optical (NLO) properties of six binuclear transition metal cluster anions with the formula of [Ch2M-(μ-Ch)2-M'CN]^2- (M = Mo, W; Ch = S, Se; M' = Cu, Ag) have been systemically investigated at both cases of gas phase and DMF solution. The obtained electronic absorption spectra reveal that the element replacements of metals M and ligands Ch have significant influence on the absorptions, especially on the low-lying ones. In addition, the transitions of μ-Ch→M are dominant for the low-lying excitations, whereas the transitions of M'→M as well as Ch→M are mainly responsible for the higher excitations. The calculated molecular first and second hyperpolarizabilities present the remarkable element substitution and solvent effects. The analyses show that the transitions involving μ-Ch→M charge transfer make the critical contributions to the first hyperpolarizability t, and that the charge transfers from the moieties of MCh4 to M'CN as well as those of μ-Ch→M and M'→M are responsible for the second hyperpolarizability y. Moreover, the introduction of solvent leads to the results that the transitions within the moieties of MCh4 and M'CN make larger contributions to the hyperpolarizability, especially to γ.展开更多
The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibratio...The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM.展开更多
Using a modified 3D random representative volume(RV)finite element model,the effects of model dimensions(impact region and interval between impact and representative regions),model shapes(rectangular,square,and c...Using a modified 3D random representative volume(RV)finite element model,the effects of model dimensions(impact region and interval between impact and representative regions),model shapes(rectangular,square,and circular),and peening-induced thermal softening on resultant critical quantities(residual stress,Almen intensity,coverage,and arc height)after shot peening are systematically examined.A new quantity,i.e.,the interval between impact and representative regions,is introduced and its optimal value is first determined to eliminate any boundary effect on shot peening results.Then,model dimensions are respectively assessed for all model shapes to reflect the actual shot peening process,based on which shape-independent critical shot peening quantities are obtained.Further,it is found that thermal softening of the target material due to shot peening leads to variances of the surface residual stress and arc height,demonstrating the necessity of considering the thermal effect in a constitutive material model of shot peeing.Our study clarifies some of the finite element modeling aspects and lays the ground for accurate modeling of the SP process.展开更多
The representative elementary volume (REV) for three-dimensional polydisperse granular packings was determined using discrete element method simulations. Granular mixtures of various sizes and particle size distribu...The representative elementary volume (REV) for three-dimensional polydisperse granular packings was determined using discrete element method simulations. Granular mixtures of various sizes and particle size distributions were poured into a cuboid chamber and subjected to uniaxial compression, Findings showed that the minimum REV for porosity was larger compared with the REV for parameters such as coordination number, effective elastic modulus, and pressure ratio. The minimum REV for porosity and other parameters was found to equal 15,10, and 5 times the average grain diameter, respectively. A study of the influence of sample size on energy dissipation in random packing of spheres has also confirmed that the REV size is about 15 times the average grain diameter. The heterogeneity of systems was found to have no effect on the REV for the parameters of interest for the narrow range of coefficient of uniformity analyzed in this paper. As the REV approach is commonly applied in both experimental and numerical studies, determining minimum REV size for polydisperse granular packings remains a crucial issue.展开更多
Oxide pegging is a widely accepted mechanistic model explaining the reactive element effect on the improved adherence of scale.However,previous models for the oxide peg formation process have not considered the effect...Oxide pegging is a widely accepted mechanistic model explaining the reactive element effect on the improved adherence of scale.However,previous models for the oxide peg formation process have not considered the effects of more than one active element added into the alloy during the peg formation.This study proposes a new model of oxide peg formation and growth for the doping of two reactive elements in an alloy(the precipitated Y and solid solute Ti).Different amounts of Ti and Y were added to a Co Ni Cr Al alloy,and the characteristics of the resulting oxide pegs,such as their linear density,size,and forming process,are obtained by examining alloy samples subjected to an isothermal oxidation operation at a temperature of 1150℃.It is found that the amount of Y determines the density of the oxide pegs,and Ti does not form a Ti-rich oxide core if a Y-rich oxide exists in the sample.In samples with the same Y content,the oxide pegs primarily grow in length,and with increased Ti content,they grow along the b-phase boundary and into the alloy.Based on these results,a three-step model for oxide peg formation and growth is conceived.展开更多
In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote r...In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote real-time temperature collection system to collect temperature data on site, and further uses the software ANSYS for analysis. Based on the comparisons between the measured data and the simulation results, the following conclusions can be drawn: 1 Our temperature monitoring system is reliable; 2 The corresponding measured data of the web plate and flange plate exposed to the sun, vary more severely than that at other positions, so these plates need higher standard design and construction requirements; 3 In the cold wave where still is sunshine, the box girder temperature effect behaves as sine-like curve.展开更多
文摘Rapidly solidified Al-Ti base alloys were prepared by melt spinning at the cooling rate about 107 K/s. The melt-spun ribbons were used to observe the dricrostructures after heat treatment.In the supersaturated Al-Tl-Si alloy, age hardening occurred after 1 h anneal in the temperature range of 4000~500℃, which seems to be attributed to the precipitation of metastable Ll2- (Al,Si)3Ti phase. However. the microhardness was relatively low because of the low v/o and the insufflcient stability of precipitates. Thus. Cr was added to Al-Ti-Si alloys in order to stabilize the microstructures and to increase the v/o of precipitate5. As a result. the alIoys containing Cr were evaluated to possess the improved properties at the service temperature.
文摘The effects of ternary solutes Ti, Co, V, Cr, Ta, W and Mo on the D03 phase 5tability of Fe3Alintermetallics are investigated by tight-binding linear Muffin-tin orbitaI method. The predictedsite preference5 of these elements in Fe3AI are in agreement with the experimental observations.The calculated Iocal magnetic moment of Fe3AI is identical to the experimentaI. ln addition, itis found that the D03 phase stability of Fe3AI doped with Ti, V, Co and Cr depends on 'energygap- of energy band near Fermi level. while the D03 phase stability of Fe3AI doped with Ta, Wand Mo may be affected by Madelung energy.
文摘The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and microhardness test.Results show that both ε.and θ carbides,during auto-tempering, may precipitate from the low-carbon martensite matrix at the same time in the 20SiMn2V steel,however,the precipitation of the ε-carbides can be inhibited by the REM contained in the 20SiMn2 VRE steel,resulting in change of the type of precipitated carbides and decrease of the extent of auto-tempering.The“in-situ”ob- servations show that the decomposition of martensite is also inhibited by the REM contained in the 20SiMn2 VRE steel during low temperature tempering.
基金financially supported by the National Natural Science Foundation of China(Grant No.12205055)the National Key Research and Development Program of China(Grant No.2021YFB3702500).
文摘Increasing the print quality is the critical requirement for the additive manufactured complex part of aero-engines of nickel-based superalloys.A study of the effects of Co and Nb on the crack is performed focusing on the selective laser melting(SLM)nickel-based superalloy.In this paper,the solvus temperature of γ',crack characteristics,microstructure,thermal expansion,and mechanical properties of SLM nickel-based superalloy are investigated by varying the content of Co and Nb.The alloy with 15Co/0Nb shows the highest comprehensive quality.Nb increases the crack risk and thermal deformation,and then Co accelerates the stress release.Therefore,Co is an extremely important alloying element for improving the quality of SLM nickel-based superalloy.Finally,the crack growth kinetics and the strain difference are discussed to reveal the SLM crack regular that is affected by time or temperature.The analysis work on the effect of alloying elements can obtain an effective foundational theory to guide the composition optimization of SLM nickel-based superalloys.
基金Project(GC13A113)supported by the Technology Research and Development Program of Heilongjiang Provincial Science and Technology DepartmentProject(12511469)supported by Heilongjiang Provincial Science and Technology Department
文摘Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.
基金Project (11551419) supported by Scientific Research Fund of Heilongjiang Provincial Education DepartmentProject (12511469) supported by Heilongjiang Provincial Science and Technology Department
文摘Three different chromizing coatings were produced on Ni substrate using a conventional pack-cementation method with Al2O3,Al2O3+CeO2 and CeO2 acting as filler,respectively,at a greatly decreased temperature(700 ℃).Effects of different fillers on the isothermal and cyclic oxidation resistance of chromizing coating in air at 850 ℃ were comparably investigated.Microstructure results show that the addition of CeO2 into the filler significantly retards the grain growth of the chromizing coating.Oxidation results indicate that the chromizing coating using CeO2 as filler exhibits somewhat increased oxidation resistance than the normal chromizmg coating,while the chromizing coating using Al2O3+CeO2 as filler exhibits much better oxidation resistance.The effects of different fillers on the oxidation behaviors were discussed in detail.
基金Project (11531319) supported by Scientific Research Fund of Heilongjiang Provincial Education Department, China
文摘Ni3Al coatings with and without Y2O3 particles were developed by annealing the electrodeposited Ni-Al composite coatings with and without Y2O3 particles at 800 °C for 3 h. The microstructures and cyclic oxidation performances of the produced Ni3Al coatings were comparatively investigated, with the emphasis on the effect of Y2O3. SEM/EDAX and TEM characterizations showed that the dispersion of Y2O3 refines the grains. Oxidation at 900 °C for 100 h showed that the addition of Y2O3 significantly improved the cyclic oxidation resistance of Ni3Al coating. The effect of Y2O3 on the microstructure and the oxidation of the Ni3Al coating were discussed in detail.
基金Project(11531319)supported by Scientific Research Fund of Heilongjiang Provincial Education Department,China
文摘By using CeO2 particles instead of part of Al2O3 particles as filler, the CeO2 was successfully entrapped into the outer layer of the chromizing coatings on the as-deposited nanocrystalline (NC) and microcrystalline (MC) Ni films using a conventional pack-cementation method at 800 °C. For comparison, chromizing was also performed under the same condition on MC Ni film using Al2O3 as filler without CeO2 particles. SEM/EDX and TEM results indicate that the refinement of Ni grain and CeO2 entrapped into the chromizing coatings refine the grain of the chromizing coating. Oxidation at 900 °C indicates that compared with the CeO2-free chromizing coating, the CeO2-dispersed chromizing coating exhibits an increased oxidation resistance. For the CeO2-dispersed chromizing coating, the refinement of Ni grain size significantly decreases the transient-oxidation scaling rate of the chromizing coatings. Together with this, the CeO2-dispersed chromizing coating formed on NC Ni exhibits a better oxidation resistance.
文摘A numerical model for generating normal fault earthquakes in the Qinghai-Xizang Plateau′S upper crust is constructed with 3-D elasto-viscous finite element method. Based on the numerical simulation calculation,some conclusions were got:If the effective viscosity of the upper crust material is less than that of lower strata of the crust in the Qinghai-Xizang Plateau, even under the strong push of India continent,the stress state of the upper crust can still be extensional in south part of the Qinghai-Xizang Plateau.Numerical simulations show that the stress state changes with the depth of the lithosphere,from extensional stress state in upper crust to compressive in the lower part.Extensional stress state may exist mainly in the upper crust of the south part of the Qinghai-Xizang Plateau.
基金supported by the Innovation Plan for Postgraduate Students sponsored by the Education Department of Jiangsu Province,China (CX08B 107Z)
文摘A hydromechanical interface element is proposed for the consideration of the hydraulic-mechanical coupling effect along the interface.The fully coupled governing equations and the relevant finite element formulations are derived in detail for the interface element.All the involved matrices are of the same form as those of a solid element,which makes the incorporation of the model into a finite element program straightforward.Three examples are then numerically simulated using the interface element.Reasonable results confirm the correctness of the proposed model and motivate its application in hydromechanical contact problems in the future.
文摘The effect of rare earth element on the solidification behavior of Al-Mg alloy was investigated in a directional solidification apparatus.It was found that during the solidification process.the rare earth element segregated in the liquid at sold-liquid interface,changed the solidification morphology and reduced the secondary arm spacing markedly.
基金supported by the SDUST Spring Bud (2009AZZ021)Taian Science and Technology Development (20112001)
文摘C^1 natural element method (C^1 NEM) is applied to strain gradient linear elasticity, and size effects on mi crostructures are analyzed. The shape functions in C^1 NEM are built upon the natural neighbor interpolation (NNI), with interpolation realized to nodal function and nodal gradient values, so that the essential boundary conditions (EBCs) can be imposed directly in a Galerkin scheme for partial differential equations (PDEs). In the present paper, C^1 NEM for strain gradient linear elasticity is constructed, and sev- eral typical examples which have analytical solutions are presented to illustrate the effectiveness of the constructed method. In its application to microstructures, the size effects of bending stiffness and stress concentration factor (SCF) are studied for microspeciem and microgripper, respectively. It is observed that the size effects become rather strong when the width of spring for microgripper, the radius of circular perforation and the long axis of elliptical perforation for microspeciem come close to the material characteristic length scales. For the U-shaped notch, the size effects decline obviously with increasing notch radius, and decline mildly with increasing length of notch.
基金Supported by the State Key Development Program for Basic Research of China(2015CB251402)the National Natural Science Foundation of China(21325628,91334108)the Mole-8.5 Supercomputing System developed by Institute of Process Engineering,Chinese Academy of Sciences
文摘In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.
基金the National Natural Science Foundation of China (No. 20573114)Foundation of Fujian Province (No. 2006F3133)
文摘In the framework of density functional theory (DFT), the electronic excitations and nonlinear optical (NLO) properties of six binuclear transition metal cluster anions with the formula of [Ch2M-(μ-Ch)2-M'CN]^2- (M = Mo, W; Ch = S, Se; M' = Cu, Ag) have been systemically investigated at both cases of gas phase and DMF solution. The obtained electronic absorption spectra reveal that the element replacements of metals M and ligands Ch have significant influence on the absorptions, especially on the low-lying ones. In addition, the transitions of μ-Ch→M are dominant for the low-lying excitations, whereas the transitions of M'→M as well as Ch→M are mainly responsible for the higher excitations. The calculated molecular first and second hyperpolarizabilities present the remarkable element substitution and solvent effects. The analyses show that the transitions involving μ-Ch→M charge transfer make the critical contributions to the first hyperpolarizability t, and that the charge transfers from the moieties of MCh4 to M'CN as well as those of μ-Ch→M and M'→M are responsible for the second hyperpolarizability y. Moreover, the introduction of solvent leads to the results that the transitions within the moieties of MCh4 and M'CN make larger contributions to the hyperpolarizability, especially to γ.
基金Supported by National Natural Science Foundation of China(Grant Nos.51105092,61403106)International Science and Technology Cooperation Program of China(Grant No.2014DFR50250)the 111 Project,China(Grant No.B07018)
文摘The efficiency and precision of parameter calibration in discrete element method (DEM) are not satisfactory, and parameter calibration for granular heat transfer is rarely involved. Accordingly, parameter calibration for granular heat transfer with the DEM is studied. The heat transfer in granular assemblies is simulated with DEM, and the effective thermal conductivity (ETC) of these granular assemblies is measured with the transient method in simulations. The measurement testbed is designed to test the ETC of the granular assemblies under normal pressure and a vacuum based on the steady method. Central composite design (CCD) is used to simulate the impact of the DEM parameters on the ETC of granular assemblies, and the heat transfer parameters are calibrated and compared with experimental data. The results show that, within the scope of the considered parameters, the ETC of the granular assemblies increases with an increasing particle thermal conductivity and decreases with an increasing particle shear modulus and particle diameter. The particle thermal conductivity has the greatest impact on the ETC of granular assemblies followed by the particle shear modulus and then the particle diameter. The calibration results show good agreement with the experimental results. The error is less than 4%, which is within a reasonable range for the scope of the CCD parameters. The proposed research provides high efficiency and high accuracy parameter calibration for granular heat transfer in DEM.
基金the financial support from China Scholarship Council (CSC) (No. 201406025083)National Natural Science Foundation of China (NSFC) (Nos. 51305012 and 51675024)+3 种基金Aviation Science Fund of China (No. 2014ZB51)financial support from NSFC (No. 51375031)financial support from NSFC (No. 51628101)National Sciences and Engineering Research Council (NSERC) Discovery grant (No. RGPIN 418469-2012)
文摘Using a modified 3D random representative volume(RV)finite element model,the effects of model dimensions(impact region and interval between impact and representative regions),model shapes(rectangular,square,and circular),and peening-induced thermal softening on resultant critical quantities(residual stress,Almen intensity,coverage,and arc height)after shot peening are systematically examined.A new quantity,i.e.,the interval between impact and representative regions,is introduced and its optimal value is first determined to eliminate any boundary effect on shot peening results.Then,model dimensions are respectively assessed for all model shapes to reflect the actual shot peening process,based on which shape-independent critical shot peening quantities are obtained.Further,it is found that thermal softening of the target material due to shot peening leads to variances of the surface residual stress and arc height,demonstrating the necessity of considering the thermal effect in a constitutive material model of shot peeing.Our study clarifies some of the finite element modeling aspects and lays the ground for accurate modeling of the SP process.
文摘The representative elementary volume (REV) for three-dimensional polydisperse granular packings was determined using discrete element method simulations. Granular mixtures of various sizes and particle size distributions were poured into a cuboid chamber and subjected to uniaxial compression, Findings showed that the minimum REV for porosity was larger compared with the REV for parameters such as coordination number, effective elastic modulus, and pressure ratio. The minimum REV for porosity and other parameters was found to equal 15,10, and 5 times the average grain diameter, respectively. A study of the influence of sample size on energy dissipation in random packing of spheres has also confirmed that the REV size is about 15 times the average grain diameter. The heterogeneity of systems was found to have no effect on the REV for the parameters of interest for the narrow range of coefficient of uniformity analyzed in this paper. As the REV approach is commonly applied in both experimental and numerical studies, determining minimum REV size for polydisperse granular packings remains a crucial issue.
基金financially supported by Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China(No.2015GB118001)。
文摘Oxide pegging is a widely accepted mechanistic model explaining the reactive element effect on the improved adherence of scale.However,previous models for the oxide peg formation process have not considered the effects of more than one active element added into the alloy during the peg formation.This study proposes a new model of oxide peg formation and growth for the doping of two reactive elements in an alloy(the precipitated Y and solid solute Ti).Different amounts of Ti and Y were added to a Co Ni Cr Al alloy,and the characteristics of the resulting oxide pegs,such as their linear density,size,and forming process,are obtained by examining alloy samples subjected to an isothermal oxidation operation at a temperature of 1150℃.It is found that the amount of Y determines the density of the oxide pegs,and Ti does not form a Ti-rich oxide core if a Y-rich oxide exists in the sample.In samples with the same Y content,the oxide pegs primarily grow in length,and with increased Ti content,they grow along the b-phase boundary and into the alloy.Based on these results,a three-step model for oxide peg formation and growth is conceived.
基金Supported by the China Postdoctoral Science Foundation(2013M531560)the Technology Innovation Plan in Traffic of Shandong Province(2012A15)the Science&Technology Development Projects of Shandong Province(2014GSF120015)
文摘In order to study the temperature distribution and the corresponding temperature effects on pre-stressed concrete(PC) curved box girder bridge in Shandong Province, this paper builds and adopts an automatic remote real-time temperature collection system to collect temperature data on site, and further uses the software ANSYS for analysis. Based on the comparisons between the measured data and the simulation results, the following conclusions can be drawn: 1 Our temperature monitoring system is reliable; 2 The corresponding measured data of the web plate and flange plate exposed to the sun, vary more severely than that at other positions, so these plates need higher standard design and construction requirements; 3 In the cold wave where still is sunshine, the box girder temperature effect behaves as sine-like curve.