The effects of rare earth(RE) elements Y and Nd on the microstructure and mechanical properties of Mg-6Al magnesium alloy were investigated.The results show that a proper level of RE elements can obviously ref ine the...The effects of rare earth(RE) elements Y and Nd on the microstructure and mechanical properties of Mg-6Al magnesium alloy were investigated.The results show that a proper level of RE elements can obviously ref ine the microstructure of Mg-6Al magnesium alloys,reduce the quantity of β-Mg17Al12 phase and form Al2Y and Al2Nd phases.The combined addition of Y and Nd dramatically enhances the tensile strength of the alloys in the temperature range of 20-175℃.When the content of RE elements is up to 1.8%,the values of tensile strength at room temperature and at 150℃ simultaneously reach their maximum of 253 MPa and 196 MPa,respectively.The main mechanisms of enhancement in the mechanical properties of Mg-6Al alloy with Y and Nd are the grain ref ining strengthening and the dispersion strengthening.展开更多
The precipitation behavior of Mn-containing dispersoids in Al-Mg-Si 6082 alloys with different Mn contents(0,0.5 and 1.0 wt%)during various heat treatments(300–500℃)was investigated.The effects of dispersoids on ele...The precipitation behavior of Mn-containing dispersoids in Al-Mg-Si 6082 alloys with different Mn contents(0,0.5 and 1.0 wt%)during various heat treatments(300–500℃)was investigated.The effects of dispersoids on elevated-temperature strength and recrystallization resistance during hot-rolling and post-rolling annealing were evaluated.The results showed that the dispersoids in the Mn-containing alloys(0.5 and 1.0%)began to precipitate at 350℃and reached the optimum conditions after 2–4 h at 400℃.However,the dispersoids coarsened with increasing holding time at temperatures above450℃.After the peak precipitation treatment at 400℃for 2 h,the yield strength at 300℃increased from 28 MPa(base alloy free of Mn)to 55 MPa(alloy with 0.5%Mn)and 70 MPa(alloy with 1%Mn),respectively,demonstrating a significant dispersoid strengthening effect at elevated temperature.In addition,the dispersoids were thermally stable at 300℃for up to 1000 h holding owing to its relative high precipitation temperature(350–400℃),leading to the superior constant mechanical performance at elevated temperature during the long service life.During hot rolling and post-rolling annealing,the presence of a large amount of dispersoids results in the higher Zener drag PZcompared with base alloy and then significantly improved the recrystallization resistance.The alloy containing 0.5%Mn exhibited the highest recrystallization resistance among three experimental alloys studied during the post-rolling process,likely resulted from the lower coarsening rate of dispersoids and the lower dispersoids free zone.展开更多
The as-cast microstructure, mechanical properties and casting fluidity of ZA84 alloy containing TiC were investigated. The experimental results indicate that adding 0.5wt%TiC to ZA84 alloy can refine the as-cast micro...The as-cast microstructure, mechanical properties and casting fluidity of ZA84 alloy containing TiC were investigated. The experimental results indicate that adding 0.5wt%TiC to ZA84 alloy can refine the as-cast microstructure, and do not cause the formation of any new phase. After 0.5wt%TiC was added to the ZA84 alloy, the morphology of ternary phases on the grain boundaries changed from coarse quasi-continuous net to fine disconnected net, and the distribution of ternary phases became dispersive and homogeneous. At the same time, the tensile properties of ZA84+0.5TiC alloy at room temperature were comparable to those of AZ91D alloy, and were higher than those of ZA84 alloy. At 150 ℃, the tensile and creep properties of ZA84+0.5TiC alloy were also higher than those of ZA84 and AZ91D alloys. In addition, compared with the AZ91D alloy, the casting fluidity of ZA84+0.5TiC alloy was slightly poor, but better than that of ZA84 alloy. The reason could be related to the effect of TiC on the solidification temperature range of ZA84 alloy.展开更多
介绍了镁合金的高温蠕变机理和提高镁合金高温蠕变性能应采取的措施,综述了AZ系(Mg Al Zn)、AS系(Mg Al Si)、AE系(Mg Al RE)、AX系(Mg Al Ca)、ACM或MRI系(Mg Al Ca RE)和AJ系(Mg Al Sr)耐热铸造镁合金的研究开发状况及其在汽车上的应...介绍了镁合金的高温蠕变机理和提高镁合金高温蠕变性能应采取的措施,综述了AZ系(Mg Al Zn)、AS系(Mg Al Si)、AE系(Mg Al RE)、AX系(Mg Al Ca)、ACM或MRI系(Mg Al Ca RE)和AJ系(Mg Al Sr)耐热铸造镁合金的研究开发状况及其在汽车上的应用状况,指出了Mg Al系耐热镁合金存在的问题和今后的发展方向。展开更多
文摘The effects of rare earth(RE) elements Y and Nd on the microstructure and mechanical properties of Mg-6Al magnesium alloy were investigated.The results show that a proper level of RE elements can obviously ref ine the microstructure of Mg-6Al magnesium alloys,reduce the quantity of β-Mg17Al12 phase and form Al2Y and Al2Nd phases.The combined addition of Y and Nd dramatically enhances the tensile strength of the alloys in the temperature range of 20-175℃.When the content of RE elements is up to 1.8%,the values of tensile strength at room temperature and at 150℃ simultaneously reach their maximum of 253 MPa and 196 MPa,respectively.The main mechanisms of enhancement in the mechanical properties of Mg-6Al alloy with Y and Nd are the grain ref ining strengthening and the dispersion strengthening.
基金the financial support of the Natural Sciences and Engineering Research Council of Canada(NSERC)Rio Tinto Aluminum through the NSERC Industry Research Chair in the Metallurgy of Aluminum Transformation at the University of Quebec at Chicoutimi.
文摘The precipitation behavior of Mn-containing dispersoids in Al-Mg-Si 6082 alloys with different Mn contents(0,0.5 and 1.0 wt%)during various heat treatments(300–500℃)was investigated.The effects of dispersoids on elevated-temperature strength and recrystallization resistance during hot-rolling and post-rolling annealing were evaluated.The results showed that the dispersoids in the Mn-containing alloys(0.5 and 1.0%)began to precipitate at 350℃and reached the optimum conditions after 2–4 h at 400℃.However,the dispersoids coarsened with increasing holding time at temperatures above450℃.After the peak precipitation treatment at 400℃for 2 h,the yield strength at 300℃increased from 28 MPa(base alloy free of Mn)to 55 MPa(alloy with 0.5%Mn)and 70 MPa(alloy with 1%Mn),respectively,demonstrating a significant dispersoid strengthening effect at elevated temperature.In addition,the dispersoids were thermally stable at 300℃for up to 1000 h holding owing to its relative high precipitation temperature(350–400℃),leading to the superior constant mechanical performance at elevated temperature during the long service life.During hot rolling and post-rolling annealing,the presence of a large amount of dispersoids results in the higher Zener drag PZcompared with base alloy and then significantly improved the recrystallization resistance.The alloy containing 0.5%Mn exhibited the highest recrystallization resistance among three experimental alloys studied during the post-rolling process,likely resulted from the lower coarsening rate of dispersoids and the lower dispersoids free zone.
基金Funded by the National Natural Science Funds for Distinguished Young Scholar in China(No.50725413)the Major State Basic Research Develop-ment Program of China(973)(No.2007CB613704)+1 种基金the Natural ScienceFoundation Project of CQ CSTC(No.2007BB4400)Chongqing Scienceand Technology Commission in China (No.2006AA4012-9-6)
文摘The as-cast microstructure, mechanical properties and casting fluidity of ZA84 alloy containing TiC were investigated. The experimental results indicate that adding 0.5wt%TiC to ZA84 alloy can refine the as-cast microstructure, and do not cause the formation of any new phase. After 0.5wt%TiC was added to the ZA84 alloy, the morphology of ternary phases on the grain boundaries changed from coarse quasi-continuous net to fine disconnected net, and the distribution of ternary phases became dispersive and homogeneous. At the same time, the tensile properties of ZA84+0.5TiC alloy at room temperature were comparable to those of AZ91D alloy, and were higher than those of ZA84 alloy. At 150 ℃, the tensile and creep properties of ZA84+0.5TiC alloy were also higher than those of ZA84 and AZ91D alloys. In addition, compared with the AZ91D alloy, the casting fluidity of ZA84+0.5TiC alloy was slightly poor, but better than that of ZA84 alloy. The reason could be related to the effect of TiC on the solidification temperature range of ZA84 alloy.
文摘介绍了镁合金的高温蠕变机理和提高镁合金高温蠕变性能应采取的措施,综述了AZ系(Mg Al Zn)、AS系(Mg Al Si)、AE系(Mg Al RE)、AX系(Mg Al Ca)、ACM或MRI系(Mg Al Ca RE)和AJ系(Mg Al Sr)耐热铸造镁合金的研究开发状况及其在汽车上的应用状况,指出了Mg Al系耐热镁合金存在的问题和今后的发展方向。