期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The J_2 invariant relative configuration of spaceborne SAR interferometer for digital elevation measurement
1
作者 Ming Xu Ying-Hong Jia Shi-Jie Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期643-651,共9页
A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant co... A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant colony algorithm to have the best compatibility with J2 invariant orbits created by differential correction algorithm. The configuration has succeeded in assigning the across-track baseline to vary periodically and with its mean value equal to the optimal baseline determined by the relative height measurement accuracy. The required relationship between crafts' magnitudes and phases is formulated for the general case of interferometry measure from non-orthographic and non-lateral view. The J2 invariant configurations created by differential correction algorithm are employed to investigate their compatibility with the required configuration. The colony algorithm is applied to search the optimal configuration holding the near-constant across-track baseline under the J2 perturbation, and the absolute height measurement accuracy is preferable as expected. 展开更多
关键词 InSAR Digital elevation model (DEM) J2 invariant orbit Differential correction algorithm Formation flying
下载PDF
Correction of global digital elevation models in forested areas using an artificial neural network-based method with the consideration of spatial autocorrelation
2
作者 Yanyan Li Linye Li +1 位作者 Chuanfa Chen Yan Liu 《International Journal of Digital Earth》 SCIE EI 2023年第1期1568-1588,共21页
To remove vegetation bias(VB)from the global DEMs(GDEMs),an artificial neural network(ANN)-based method with the consideration of elevation spatial autocorrelation is developed in this paper.Three study sites with dif... To remove vegetation bias(VB)from the global DEMs(GDEMs),an artificial neural network(ANN)-based method with the consideration of elevation spatial autocorrelation is developed in this paper.Three study sites with different forest types(evergreen,mixed evergreen-deciduous,and deciduous)are employed to evaluate the performance of the proposed model on three popular 30-m GDEMs,including SRTM1,AW3D30,and COPDEM30.Taking LiDAR DTM as the ground truth,the accuracy of the GDEMs before and after VB correction is assessed,as well as two existing GDEMs including MERIT and FABDEM.Results show that all the original GDEMs significantly overestimate the LiDAR DTM in the three forest types,with the largest biases of 21.5 m for SRTM1,26.3 m for AW3D30,and 27.18 m for COPDEM30.Taking data randomly sampled from the corrected area as the training points,the proposed model reduces the mean errors(root mean square errors)of the three GDEMs by 98.8%-99.9%(55.1%-75.8%)in the three forests.When training data have the same forest type as the corrected GDEM but under different local situations,the proposed model lowers the GDEM errors by at least 76.9%(44.1%).Furthermore,our corrected GDEMs consistently outperform the existing GDEMs for the two cases. 展开更多
关键词 Vegetation bias terrain parameter elevation correction machine learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部