The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (s...The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.展开更多
The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China i...The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China in the past half century. It is found that temperature structures differ between seasons: a latitude temperature pattern in winter and a landform temperature pattern in summer, which indicate that the effect of landform on temperature structure is much stronger in summer than that in winter and the effect of latitudinal temperature is much stronger in winter than that in summer. The mechanisms of the seasonal difference in temperature structures are also discussed in this paper.展开更多
Examining the direct and indirect effects of climatic factors on vegetation growth is critical to understand the complex linkage between climate change and vegetation dynamics. Based on the Moderate Resolution Imaging...Examining the direct and indirect effects of climatic factors on vegetation growth is critical to understand the complex linkage between climate change and vegetation dynamics. Based on the Moderate Resolution Imaging Spectroradiometer(MODIS) Normalized Difference Vegetation Index(NDVI) data and meteorological data(temperature and precipitation) from 2001 to 2012, the trend of vegetation dynamics were examined in the Ziya-Daqing basins, China. The path analysis was used to obtain the information on the relationships among climatic factors and their effects on vegetation growth. It was found that the trends of growing season NDVI were insignificant in most plain dry land, while the upward trends were significant in forest, grass and dry land in Taihang Mountains. According to the path analysis, in 23% of the basins the inter-annual NDVI variation was dominated by the direct effect of precipitation, in 5% by the direct effects of precipitation and temperature, and in less than 1% by the direct effect of temperature or indirect effects of these two climatic factors. It indicated that precipitation significantly affected the vegetation growth in the whole basins, and this effect was not regulated by temperature. Precipitation increase(especially in July, August and September) was favorable to greenness enhancement. Summer temperature rising showed negative effect on plant productivity enhancement, but temperature rise in April was beneficial for the vegetation growth. When April temperature increases by 1℃, the onset date of greenness for natural vegetation will be 2 days in advance. There was a lag-time effect of precipitation or temperature on monthly NDVI for all land use types except grass.展开更多
The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key feat...The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key features of which include positive trend in inner Tibet Plateau and South China and negative trend in North China plain and high mountain Asia(HMA).We also present the patterns of amplitudes and phases of annual and semiannual change.The mechanism underlying the semiannual period is explicitly discussed.The displacement in three directions expressed in terms of geo-potential spherical coefficients and load Love numbers are given.A case study applied with these equations is presented.The results show that Global Positioning System(GPS) observations can be used to compare with Gravity Recovery and Climate Experiment(GRACE) derived displacement and the vertical direction has a signal-noise-ratio of about one order of magnitude larger than the horizontal directions.展开更多
以山东和福建为研究区,基于气象站气候观测数据及ERA5-land再分析数据,采用变化趋势分析、观测减再分析(Observation Minus Reanalysis,OMR)和对比分析等方法,在区域尺度上探讨不同气候背景下城市化引起的局地升温差异。结果表明,1987—...以山东和福建为研究区,基于气象站气候观测数据及ERA5-land再分析数据,采用变化趋势分析、观测减再分析(Observation Minus Reanalysis,OMR)和对比分析等方法,在区域尺度上探讨不同气候背景下城市化引起的局地升温差异。结果表明,1987—2017年山东省台站年平均气温平均变化率略高于福建省,分别为0.38℃·(10a)^(-1)和0.33℃·(10a)^(-1),但两省各季节气温变化趋势存在很大差异。城市化对山东省年和各季节T_(mean)变化的影响均大于福建省,北方相对干旱且较长的日照时间更利于城市热岛形成,这是导致上述差异的重要原因。此外,城市化对两省秋、冬季节T_(mean)变化的影响较春、夏季节更大,这与秋、冬季节相对干旱且静稳的气候特征有关。山东省城市化升温幅度的季节性差异较福建省大,可能与北方地区季节气候波动更大有关。展开更多
High topographies, such as the Tibetan plateau (TP) in China, have been considered as the sensitive areas in response to global climate change. By analyzing the relationship between warming structure and altitude (...High topographies, such as the Tibetan plateau (TP) in China, have been considered as the sensitive areas in response to global climate change. By analyzing the relationship between warming structure and altitude (1 000-5 000 m) in the TP and its vicinities using the 46-year January mean observed temperature data, we found that there was a significant altitude effect of temperature warming onset time (mutation time) on the plateau and the neighboring regions: the higher the altitude, the later the climate warming happens, and vice versa. There also seems a slight altitude effect on warming magnitude: the higher the altitude, the less the warming magnitude. Therefore, the temperature warming in the high altitude area of the TP (below 5 000 m) responds to global warming less sensitively than the low-altitude neighboring areas both in onset time and magnitude, which may be mainly caused by high albedo and large thermal capacity of the ice/snow cover on the higher part of the plateau and possible heat island effect in the lower part of the plateau.展开更多
In this study, the concurrent variation relationships between the East Asian subtropical jet (EASJ) and polar-front jet (PFJ) over the East Asian land mass in the winter season on different timescales are identifi...In this study, the concurrent variation relationships between the East Asian subtropical jet (EASJ) and polar-front jet (PFJ) over the East Asian land mass in the winter season on different timescales are identified and the impacts of the jet concurrent variation patterns on the atmospheric circulation in mid-high latitude regions and climate ano- malies in China are examined, using NCEP-NCAR reanalysis data and observational data. The major variability modes of the winter upper-level wind field on interannual timescales are characterized by the meridional shift of the PFJ and out-of-phase variation in the intensity of the subtropical jet and PFJ. On subseasonal and synoptic timescales, the concurrent variation relationships can be categorized into four configuration patterns: a strong (weak) subtropical jet accompanied by a weak (strong) PFJ, or a strong (weak) subtropical jet with a strong (weak) PFJ. The out-of- phase variation [i.e., a stronger (weaker) EASJ and weaker (stronger) PFJ] is found to be more common than the in- phase variation [i.e., a stronger (weaker) EASJ and stronger (weaker) PF J]. These concurrent variation relationships repre- sent the integral structure and variation features of the atmospheric general circulation over East Asia, and have signi- ficant impacts on the weather and climate. The strong subtropical jet/weak PFJ (weak subtropical jet/strong PFJ) pat- tern leads to anomalous negative (positive) geopotential height in midlatitude regions and favors cold (warm) condi- tions, and positive (negative) rainfall anomalies in southern China. For both strong jet configurations, the geopoten- tial height anomaly in the mid-high latitudes shows a northwest-southeast tilted dipole pattern, resulting in northern warm-southern cold temperature anomalies, and positive rainfall anomalies in southern China. For both weak jet situations, positive geopotential height anomalies dominate the East Asian area, and warm conditions occur over most areas in China, corresponding to less negative rainfall anomalies in southern China. The complicated rainfall and temperature anomaly patterns in China can be explained by the concurrent variation relationships between the two jets. A close relationship may exist between the synoptic-scale transient eddy activity (STEA) and the intensity of jet streams, especially for the PFJ. Significantly reduced (strengthened) STEA over the polar-front area is intim- ately associated with a decreased (increased) intensity of the PFJ.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No. XDA05100502)+1 种基金the National Basic Research Program of China (Grant No.2010CB950804)100 Talents Program of the Chinese Academy of Sciences
文摘The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.
基金supported NKBRSF,PR China,No.2002CB111507The National Key of Science and Technology,No.2004BA508B22+2 种基金the Chinese National Natural Science Foundation(90302006,90511026)the Hundred Talents Program(2004401,KZCX3-SW-339)of the Chinese Academy of Sciencesthe Project for 0utstanding Scientists(40121101)of the National Natural Science Foundation of China.
文摘The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China in the past half century. It is found that temperature structures differ between seasons: a latitude temperature pattern in winter and a landform temperature pattern in summer, which indicate that the effect of landform on temperature structure is much stronger in summer than that in winter and the effect of latitudinal temperature is much stronger in winter than that in summer. The mechanisms of the seasonal difference in temperature structures are also discussed in this paper.
基金Under the auspices of National Natural Science Foundation of China(No.41471026,31171451)Strategic Science and Technology Program in the Thirteenth Five-Year Plan of Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences(No.2012ZD003)
文摘Examining the direct and indirect effects of climatic factors on vegetation growth is critical to understand the complex linkage between climate change and vegetation dynamics. Based on the Moderate Resolution Imaging Spectroradiometer(MODIS) Normalized Difference Vegetation Index(NDVI) data and meteorological data(temperature and precipitation) from 2001 to 2012, the trend of vegetation dynamics were examined in the Ziya-Daqing basins, China. The path analysis was used to obtain the information on the relationships among climatic factors and their effects on vegetation growth. It was found that the trends of growing season NDVI were insignificant in most plain dry land, while the upward trends were significant in forest, grass and dry land in Taihang Mountains. According to the path analysis, in 23% of the basins the inter-annual NDVI variation was dominated by the direct effect of precipitation, in 5% by the direct effects of precipitation and temperature, and in less than 1% by the direct effect of temperature or indirect effects of these two climatic factors. It indicated that precipitation significantly affected the vegetation growth in the whole basins, and this effect was not regulated by temperature. Precipitation increase(especially in July, August and September) was favorable to greenness enhancement. Summer temperature rising showed negative effect on plant productivity enhancement, but temperature rise in April was beneficial for the vegetation growth. When April temperature increases by 1℃, the onset date of greenness for natural vegetation will be 2 days in advance. There was a lag-time effect of precipitation or temperature on monthly NDVI for all land use types except grass.
基金supported financially by the National Natural Science Foundation of China(41174063,41331066 and41474059)the CAS/CAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-19)the SKLGED Foundation(2014-1-1-E)
文摘The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key features of which include positive trend in inner Tibet Plateau and South China and negative trend in North China plain and high mountain Asia(HMA).We also present the patterns of amplitudes and phases of annual and semiannual change.The mechanism underlying the semiannual period is explicitly discussed.The displacement in three directions expressed in terms of geo-potential spherical coefficients and load Love numbers are given.A case study applied with these equations is presented.The results show that Global Positioning System(GPS) observations can be used to compare with Gravity Recovery and Climate Experiment(GRACE) derived displacement and the vertical direction has a signal-noise-ratio of about one order of magnitude larger than the horizontal directions.
文摘以山东和福建为研究区,基于气象站气候观测数据及ERA5-land再分析数据,采用变化趋势分析、观测减再分析(Observation Minus Reanalysis,OMR)和对比分析等方法,在区域尺度上探讨不同气候背景下城市化引起的局地升温差异。结果表明,1987—2017年山东省台站年平均气温平均变化率略高于福建省,分别为0.38℃·(10a)^(-1)和0.33℃·(10a)^(-1),但两省各季节气温变化趋势存在很大差异。城市化对山东省年和各季节T_(mean)变化的影响均大于福建省,北方相对干旱且较长的日照时间更利于城市热岛形成,这是导致上述差异的重要原因。此外,城市化对两省秋、冬季节T_(mean)变化的影响较春、夏季节更大,这与秋、冬季节相对干旱且静稳的气候特征有关。山东省城市化升温幅度的季节性差异较福建省大,可能与北方地区季节气候波动更大有关。
基金supported by the National Natural Science Foundation of China (Nos.40830743,40771187)Scientific Effort of Education Department of Shaanxi Province (No.09JK429)
文摘High topographies, such as the Tibetan plateau (TP) in China, have been considered as the sensitive areas in response to global climate change. By analyzing the relationship between warming structure and altitude (1 000-5 000 m) in the TP and its vicinities using the 46-year January mean observed temperature data, we found that there was a significant altitude effect of temperature warming onset time (mutation time) on the plateau and the neighboring regions: the higher the altitude, the later the climate warming happens, and vice versa. There also seems a slight altitude effect on warming magnitude: the higher the altitude, the less the warming magnitude. Therefore, the temperature warming in the high altitude area of the TP (below 5 000 m) responds to global warming less sensitively than the low-altitude neighboring areas both in onset time and magnitude, which may be mainly caused by high albedo and large thermal capacity of the ice/snow cover on the higher part of the plateau and possible heat island effect in the lower part of the plateau.
基金Supported by the National Natural Science Foundation of China(41130963 and 41621005)Jiangsu Collaborative Innovation Center for Climate Change
文摘In this study, the concurrent variation relationships between the East Asian subtropical jet (EASJ) and polar-front jet (PFJ) over the East Asian land mass in the winter season on different timescales are identified and the impacts of the jet concurrent variation patterns on the atmospheric circulation in mid-high latitude regions and climate ano- malies in China are examined, using NCEP-NCAR reanalysis data and observational data. The major variability modes of the winter upper-level wind field on interannual timescales are characterized by the meridional shift of the PFJ and out-of-phase variation in the intensity of the subtropical jet and PFJ. On subseasonal and synoptic timescales, the concurrent variation relationships can be categorized into four configuration patterns: a strong (weak) subtropical jet accompanied by a weak (strong) PFJ, or a strong (weak) subtropical jet with a strong (weak) PFJ. The out-of- phase variation [i.e., a stronger (weaker) EASJ and weaker (stronger) PFJ] is found to be more common than the in- phase variation [i.e., a stronger (weaker) EASJ and stronger (weaker) PF J]. These concurrent variation relationships repre- sent the integral structure and variation features of the atmospheric general circulation over East Asia, and have signi- ficant impacts on the weather and climate. The strong subtropical jet/weak PFJ (weak subtropical jet/strong PFJ) pat- tern leads to anomalous negative (positive) geopotential height in midlatitude regions and favors cold (warm) condi- tions, and positive (negative) rainfall anomalies in southern China. For both strong jet configurations, the geopoten- tial height anomaly in the mid-high latitudes shows a northwest-southeast tilted dipole pattern, resulting in northern warm-southern cold temperature anomalies, and positive rainfall anomalies in southern China. For both weak jet situations, positive geopotential height anomalies dominate the East Asian area, and warm conditions occur over most areas in China, corresponding to less negative rainfall anomalies in southern China. The complicated rainfall and temperature anomaly patterns in China can be explained by the concurrent variation relationships between the two jets. A close relationship may exist between the synoptic-scale transient eddy activity (STEA) and the intensity of jet streams, especially for the PFJ. Significantly reduced (strengthened) STEA over the polar-front area is intim- ately associated with a decreased (increased) intensity of the PFJ.