期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modified Elite Opposition-Based Artificial Hummingbird Algorithm for Designing FOPID Controlled Cruise Control System 被引量:2
1
作者 Laith Abualigah Serdar Ekinci +1 位作者 Davut Izci Raed Abu Zitar 《Intelligent Automation & Soft Computing》 2023年第11期169-183,共15页
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-... Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area. 展开更多
关键词 Cruise control system FOPID controller artificial hummingbird algorithm elite opposition-based learning
下载PDF
BEESO:Multi-strategy Boosted Snake-Inspired Optimizer for Engineering Applications 被引量:3
2
作者 Gang Hu Rui Yang +1 位作者 Muhammad Abbas Guo Wei 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1791-1827,共37页
This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the matin... This paper presents an efficient enhanced snake optimizer termed BEESO for global optimization and engineering applications.As a newly mooted meta-heuristic algorithm,snake optimizer(SO)mathematically models the mating characteristics of snakes to find the optimal solution.SO has a simple structure and offers a delicate balance between exploitation and exploration.However,it also has some shortcomings to be improved.The proposed BEESO consequently aims to lighten the issues of lack of population diversity,convergence slowness,and the tendency to be stuck in local optima in SO.The presentation of Bi-Directional Search(BDS)is to approach the global optimal value along the direction guided by the best and the worst individuals,which makes the convergence speed faster.The increase in population diversity in BEESO benefits from Modified Evolutionary Population Dynamics(MEPD),and the replacement of poorer quality individuals improves population quality.The Elite Opposition-Based Learning(EOBL)provides improved local exploitation ability of BEESO by utilizing solid solutions with good performance.The performance of BEESO is illustrated by comparing its experimental results with several algorithms on benchmark functions and engineering designs.Additionally,the results of the experiment are analyzed again from a statistical point of view using the Friedman and Wilcoxon rank sum tests.The findings show that these introduced strategies provide some improvements in the performance of SO,and the accuracy and stability of the optimization results provided by the proposed BEESO are competitive among all algorithms.To conclude,the proposed BEESO offers a good alternative to solving optimization issues. 展开更多
关键词 Snake optimizer Bi-Directional Search Evolutionary Population Dynamics elite Opposition-Based learning Strategy Mechanical optimization design
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部